eneral
Technical Information

Mass Storage

LIMITED WARRANTY

Corvus warrants its hardware products against defects in materials and
workmanship for a period of 180 days from the date of purchase from
any authorized Corvus Systems dealer. If Corvus receives notice of
such defects during the warranty peried, Corvus will, at its option,
either repair or replace the hardware products which prove to be
defective. Repairs will be performed and defective parts replaced
with either new or reconditioned parts.

Corvus software and firmware products which are designed by Corvus for
use with a hardware product, when properly installed on that hardware
product, are warranted not to fail to execute their programming
instructions due to defects in materials and workmanship for a period
of 180 days. If Corvus receives notice of such defects during the
warranty period, Corvus does not warrant that the operation of the
software, firmware or hardware shall be uninterrupted or error free.

Limited Warranty service may be obtained by delivering the product
during the 180 day warranty period to Corvus Systems with proof of
purchase date. YOU MUST CONTACT CORVUS CUSTOMER SERVICE TO OBTAIN A
"RETURN AUTHORIZATION CODE" PRIOR TO RETURNING THE PRODUCT. THE RAC
(RETURN AUTHORIZATION CODE) NUMBER ISSUED BY CORVUS CUSTOMER SERVICE
MUST APPEAR ON THE EXTERIOR OF THE SHIPPING CONTAINER. ONLY ORIGINAL
OR EQUIVALENT SHIPPING MATERIALS MUST BE USED. If this product is
delivered by mail, you agree to insure the product or assume the risk
of loss or damage in transit, to prepay shipping charges to the
warranty service location and to use the original shipping container.
Contact Corvus Systems or write to Corvus Customer Service, 2100
Corvus Drive, San Jose, CA, 95124 prior to shipping equipment.

ALL EXPRESS AND IMPLIED WARRANTIES FOR THIS PRODUCT, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURDOSE,
ARE LIMITED IN DURATION TO A PERIOD OF 180 DAYS FROM DATE OF PURCHASE,
AND NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THIS
PERIOD. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED
WARRANTY IASTS, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

IF THIS PRODUCT IS NOT IN GOOD WORKING ORDER AS WARRANTED ABOVE, YOUR
SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. IN NO
EVENT WILL CORVUS SYSTEMS BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING
ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH PRODUCT,
EVEN IF CORVUS SYSTEMS OR AN AUTHORIZED CORVUS SYSTEMS DEALER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, SO THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.

CORVUS

December 16, 1985

Dear Customer,

The artwork for several of our user manuals have been damaged
beyond use and we have been unable to replace them in time to fill
your order, As a temporary replacement, we have made a copy of an
existing manual for your use, Unfortunately it did not copy well
and some of the line art is not legible,

We expect new manuals from new artwork to be available in
March,

Please fill out the attached form and mail it back to us,
We will send you a replacement manual just as soon as they are
available, '

Quality Rssurance Department
Corvus Systems, Inc.

P.0. Box 2428

White City, Oregon 97583

KK K K K K K K K K K K K K kK Kk K ok K K Xk K K k % k % k Kk Xk X X X X

Name

Address

City State Zip

Manuals required:

___Consetllation 7188-85944-81
____ Mass Storage 7188-85345-081
____ Omninet 71008-06614-01

7100~ 07629-01

CORVUS MASS STORAGE SYSTEMS
GENERAL TECHNICAL INFORMATION

Part Number: 7100-05945-01
Release Date: October 1984
Revision: A

Mass Storage Systems GTI Table of Contents

I
TABLE OF |
CONTENTS |
I
I

LiStOf Figures OI00ooo..-.o...oocq-'loo'.oq.olooln...'lo..lacox
SCOpe ll..!..'lOl..l...'..w'l.'......l'.'..0'...0.'...“000....x

Conventions ® 9 9 6 0 @ 6 0 ¢ & 0 T 0T L B O B O B S ST E SO L0 SE I LN PSS Vi

Chapter 1: Controller Functionsccceceeveescsccoscsoscesess 1
Read=-Write Commandscceeeeeencececcccssosssscosssssss 5
Logical Sector Address Decoding ...eceeeeecvesescsnosacesss 1l
Write Verify Option ..iiiiiiiertennssseosccocesssonsscnnnssss 12
Fast Tracks (BanNK) ceccecssconsossnsssnonsssoscsascsssscssscss 12
SEeMAPNOYES civsceercccacccccsscscasccstssssvosssscssscsssecse 1lé

Implementation Details For Semaphorescceccceeveees. 18
Performance Considerations When Using Semaphores 19
PipeS ittt tenesssenossssssssnsssssssssassssssssnssasssssss 20
Implementation Details FOr Pipes ..cceveeoscesscoscssnss 29
Individual Pipe Disk Space Allocation ...ceesseecesscces 32
Performance Considerations When Using Pipes¢e00e... 33
Active user tableiieevesevecrccscocsccscssassesssnsscss 34

Implementation Details For The
ActiveUserTable 9 0 8 # 5 8 0 G 0B O N O S 9 E E W O LA NN N 41

Booting ® @ & 0 0 & ¢ . 9 0 0 9 O O B P PP B N SO N S OSSN ENN eSO TSNP 42
Implementation Details For Boot Commandscceccee.. 44

Drive Parameters S ® 0 9 8 5 0 0 P P 0P T B O P S O P OO NSO L T OO OO OO OO OOPSEOEE 45

Corvus Systems iii

Mass Storage Systems GTI

ParkingTheHeadS ® & 5 0 8606060006000 0000060000000

Changing Bank Tapes Or Powering Off The Bank

Checking Drive Interfaceceo..
Prep Mode ...ceocernnnncnosncnoccccce
Format Driveieeeereceecennnncs
Format Tape (Bank) ..eeeececoccecsca
Media Verify (CRC) tieeeeeennnnnonns
Track SpParing .eeeecececeseosecsnees
Physical Versus Logical Addressing .
Interleave ...cceveeeceesensanscnnno
Read-Write Firmware Areac.....
Virtual Drive Table (Rev B/H Drives)

Constellation Parameterscceec.

Chapter 2: Omninet Protocols
Constellation Disk Server Protocols
Sending A Short Command
Sending A Long Command ...eeeoee.

0ld Disk Server ProtocolSev...
New Disk Server Protocolseoce..
Constellation Name Lookup Protocols

Active user table ..cceveeccssoncnns

Chapter 3: Outline Of A Disk Driver ..
omninet ® & 6 6 6 0 0 5 & & 0 5 0 s 0 DO O s 0000 0 a0 0o

01d Disk Server ProtocolsS ..eeeeeees

Corvus Systems

Table

of

Contents

eees 102

eees 111

eees 113
. o 0o 0 114

" o o0 118

iv

Mass Storage Systems GTI Table of Contents

New Disk Server ProtoColsSeeeveversrsesscccscoscssassaosa 129

Flatcable R EEEEEEEEE I I I A S A A IR R BN R B A I A L A A A A A 145

Chapter 4: Sending Other Disk Commandscececceeeessees 149

Chapter 5: SemaphOoresSceeeveessssssssss-sssssscssssscens 167
VOlume Sharing N EEEEEEEEEENX N EErEr ErEr Sy S I R I I I I I N 4 o o & ¢ 0 168
Volume LOCking ® © 2 6 5 5 0 0 0 5 0 0% 6 P B B S O L U P E O L E PO EBDP OO e 8 & 5 0 0 0 169

File Or Record LOCKING tcceseesesosssnsessnsosesssseassscss 172

Chapter 6: Using Pipesvveeeerrrencessnsssssoncssseenes 181
Asimple Spooler 'Ool!ll.......lll....‘l"..ll.l.t.'..‘l.. 185
Using Pipes to Send MeSSAgesS ...eceeccsoscsessosssassesensss 186

The Corvus SpOO]. Program ® 0 0 ® 5 &6 0 0 0 9 0% 6O 0 S S OB N C LN OSSO N 187

Appendix A: Device Specific Informationccccceceeceees 193
Rev B/H Drives " EEEREEREERENEINE Y I rEy Iy S Sy I I I I R R I I R I I I N N B L I B 194
Rev B Hardware Description ® & ® 8 ® 0 5 P O O O 85 O 8PN SO DN 194

RevBFirmwareAnd Promcode ® © & 8 © 8 9 8 % O % 8 O O O S 00 s 0000 194

w

Rev Firmware Layout .siceeeesesesesoresccccssssnsssses 195

Rev PArametersS .eecvesescsssosssasossccsssnscrsssossess 197
Rev Front Panel LED's And Switchescceeveeeses 197
Rev DIP SWitChesS .icveeeversorsoconscossosssnssasanss 199
Rev PArametersS c.eececsessnsossssossesososassssseseses 200

Rev Front Panel LED's And Switches ...iveeereacasssss 200

n o om I ® w w

Rev DIP switches ® & @ 9 8 ¢ 9 % 8 0 & ¢ O & ¢ 2 "N PN ® ® 5 0 9 9 ¢ & & 0 0 & 0 ¢ 0 201
Disk Flat Cable INterfaceecesesecacsoscassocassssssss 202
Cable timing 2 9 ® ® 9 9 ¢ & 6 5 0 8 8 O 0 0 NS ® 9 8 % ® ® 5 8 & 0 8 6 0 % S O S 00 0 0 0 203

Cable Connector Descriptionceesceceeeccccaaanceses 205

Corvus Systems v

Mass Storage Systems GTI Table of Contents

OMNIDYiVE it veeeeeeennoesssossesesososssssesnssseseseneseas 205
OomniDrive Hardware Descriptioneieeeeeeeeeseeeesess 205
OomniDrive Firmware And Prom Codeceoeeeecceccceaeess 206
OmniDrive Firmware LayouUteeeesvesccscasosocscceess 207
OmniDrive Parametersieeececsesoseccnccscsccesess 209
OmniDrive Front Panel LED'S ..:teeeessoccscnsscesseess 210
OmniDrive DIP SWitChes ..iiieeirrverrecenososcnonsnsess 211

The BanK .ocececeecetensssssesssossnssosssssssscssnsssoseess 212
The Bank Hardware Descriptionveieeeeceeecnccceceaes 212
The Bank Firmware And Prom COA€ .:viesereececnscnssnses 213
The Bank Firmware Layout ...ieeeeeesescrcecosccssessoses 214
The Bank Parametersecoeeeesseesssscassssecsssasnss 218

The Bank Front Panel LED'S tcvoeseecccsescososcocscsssses 218

AppendixX B: TableS ..cereesesscosssosossssscessssasosnassness 221
Constellation Device TYPES +tieeesesescoscessscssesccsnsanas 221
Constellation Boot Number Assignmentsceceeeeceseees. 223
Summary Of Disk Commands In Numerical Ordereveseeeess 224
Return Codes For Rev B/H DrivesS ...cieesececescsceocssscces 225
Return Codes for OmniDrive/Bankvseevecescsnssassnness 227
Active User Table €XYOrS ..ecoesoessesscssosssossssscassnss 227
Boot COommMand @rroOrS ..eeeececcososssscsssssssccsccosssnsscnss 227
Pipe states ..cvviirrersesseseersssossssssorsssssosssnsscncsse 228
Pip@ BrrOrS coeesseeesssscssscosossssssssssssosesssssceacsss 228
Semaphore states ..ceeeeeersesseosccscersssossssssssescssnss 228

Semaphore errors ® 0 6 8 0 9 0 0 0 0 8 5 0 0 0T 0 OO LG OO O PO E N s 000 e 0N 228

Corvus Systems vi

Mass Storage Systems GTI

Table of Contents

Transporter Result CcodesS ...viieeeveersovescrscnsosoncs

Transporter Command SUMMAYY «ececesocssassssosescsons

Appendix C: OmniDrive and Rev B/H Drives

Appendix D: Transporter Cards ...c.oeeee
The Apple II Transporter ...ceceeseees
Software Notesceeeeevinccnnns
The Concept Transporter ...eeseesesss
The IBM PC Transporter ...eeecsceesees
Rom Servicescecesecscsnsesonns
I/O Services ..iveessvecscnccsascnns
The NC-Transporterceseeseesoovses
The VT-180 Transporter ...cceceeecasas
The Sony Transporter ...eeecseseecesaes
The Universal Buffered Transporter ..
The Z-80 Engineering Tranporter
The IBM PCjr Transporter ...ceeeccesee
The Z-100 Transporterseeeeoncees

The Rainbow Transporterc:veeee.

e e 00 ¢ 0000 00 00

o 0 0 0 00 0 0 00

e 6 00900 00 00

Interrupts ® & & 6 5 & 5 0 6 60 0 S B ST OSSO E R NSNS0 e OO O

LSI-ll Transporter ® 8 6 0 8 0 ¢ @ 8 08 5 8 5 00 0 00 6000 00 s 000000

Jumpers And SWitChes ® ® @ 08 30 6 0 0 % TV OSSO CCOEEOCEEOCEESCOCTOOE

Bootstrap ® 5 0 0 0 0 0 0 00T X 8 G0 0 E 2 GO PSSP E EOCO OS9G L e

® o0 00

oo 2 00

e o 0 00

e o 0 0 0

o 0o 0 00

e e 0 0 o

e e 0 o0

L B)

DeVice Address ® 9 0 9 0 8 8 0 0 0 PV O S PED LSS P SO0 0 EE 0 OO0

Programming GUide 9 6 0 & 6 0 0 0 2 P S 8.0 0 0 0 5SS P OO L L OO0 SO

CSR - Control And Status Register¢ceveevecscccces

Corvus Systems

229

229

231

235
235
236
236
237
238
238
241
242
243
243
244
245
245
246
247
248
248
248
248
249

249

vii

Mass Storage Systems GTI

CAR - Command Address Registerceeeeeseenn
Sofitware Notes ® @ 0 0 6 0 4 0 & 0 0 0 0 S O 0O O 8 W PO S e 0N 0 e e
Interrupts ® 6 6 0 0 0 0 0 0 5 20 0 0 0 S SO N OO O 0SS OO S OO COE S BSOE

Byte Order L A O I B O N I I B I O I B I I I I Y I O A N R R Y

Appendix E: Corvus Flat Cable Interface Cards
Sample Interface Routine FOr 6502 ..ciceeceveness
Sample Interface Routine For 8080/Z80 ...svsesees
Sample Interface Routine For 8086/8088e000.
Entry Points For Apple II ROM ..ceceeeiconccncess
Entry Points For IBM PC/TI ROM .tvecesevccccoccenn

Software Developer's Informationceeeeecceescecs
MSDOS teeeecesesocceeaassssassosnssacasasasasssnsas
CP/M 80 Constellation II ...eseesecosvsovososcens
CP/M 86 Constellation II ..eeeeseeceoscosscsccons
CP/M 80 (Flat Cable ONly) seveesnccessccsscsccnss

Apple Pascal Constellation I ..icecveceesscccnsns

e o 0 0 0 00 00

s 0 0 0 00

Apple DOS constellationIcolooucoooooooou.lilo..ono.oa.oc

Index (BB A B R O I I R I I I I I I SR T I N Y T I I I B O I S T B R O N T T T N TN N T R R Y N Y

Corvus Systens

Table of Contents

250
250
250

250

253
255
258
275
281
281
283
283
285
285
286
287

287

289

viii

Mass

Storage Systems GTI List Of Figures

I
LIST OF |
FIGURES |
l
I

Functional list of controller commandscsecesesseees 34
Message exchange for disk server protoColseserececes 77
Find all disk servers using directed commands 103
Find all disk servers using broadcast commands 104

Message exchange-for disk server protocol,
showing timeoutscccveeeceracescecscnsonsssnseseasess 115

Flowchart of a short command,
0ld disk server protoColceescecserssssrasecsssnesss 121

Flowchart of a long command,
0ld disk server ProtoCOl ..:.ceeeeesrvesscvcssccossnsesss 124

Flowchart of wait for disk server response,
old disk server protocol .cccsseasesscrsscssescosscssess 127

Flowchart of flush, old disk server protocol¢cc.... 128

Flowchart of a short command,
new disk server protoCol .oeeceeseecssssesssssscossassesss 134

Flowchart of a long command,
new disk server protoColsceeeecsescsrssssnscssanss 137

Flowchart of wait for disk server response,
new disk server pProtoCoOl:seecscsscsscssassonseossss 141

Flowchart of cancel, restart check,
new disk server protoColvesesecerconcncsescosssosss 142

Flowchart of flush, new disk server protocol 143
Flat cable command S€QUENCE .:sseesvsesscssssvsssesccssss 146
Flat cable turn around routineiceveeteeeeesceesss 146

LSI-11 Transporter board jumper locationsccccoec.. 251

Corvus Systems ix

Mass Storage Systems GTI Scoupe

SCOPE

This manual describes the command protocols used by Corvus mass
storage systems. It covers the disk commands and the Omninet
protocols used to send those commands. It also describes how to
use the various features provided by the commands. It is meant
to be used in conjunction with the following manuals:

Omninet Iocal Area Network General Technical Information,
Corvus P/N 7100-02040

Constellation Software General Technical Information,
Corvus P/N 7100-05944-01

Omninet Protocol Book

CONVENTIONS

Hexadecimal values are suffixed with an h. For example, FFh,
02h.

When not otherwise qualified, a sector is 512 bytes. A block is
always 512 bytes.

All program examples are given in psuedo-Pascal and are not
necessarily syntactically correct. The examples are meant to
serve as guidelines to you in implementing your own programs.

In command and table descriptions, 1sb means least significant

byte or least significant bit, depending on context. Similarly,
msb means most significant byte or most significant bit.

Corvus Systems : X

Mass Storage Systems GTI

The TYPE column used in describing commands, protocols, and

tables has the

Type

BYTE
WORD

FWRD

ADR3

FAD3

DADR

BSTR

NSTR

FLAG

ARRY

Corvus Systems

following meanings:

Meaning

gg-;;;;gned 8 bit value.

An unsigned 16 bit value; msb, 1lsb format.

An unsigned 16 bit value; 1lsb, msb format;
a byte-flipped WORD.

An unsigned 24 bit value; msb..lsb format.

An unsigned 24 bit value; lsb..msb format;
a byte-flipped ADR3.

A 3-byte field, called Disk address;
interpretation is shown in Chapter 1, section
titled Logical sector address decoding.

A string of 1 or more characters, padded on the
right with blanks (20h).

A string of 1 or more characters, padded on the
right with NULs (0Oh).

A byte with bits numbered 7..0; msb..lsb format.

An array of 1 or more BYTEs.

Scope

xi

Mass Storage Systems GTI Controller Functions

|
CONTROLLER |
FUNCTIONS | 1
I
I

Corvus currently supports three mass storage devices: the
Revision B/H Series drives, the OmniDrive (TM) mass storage
system, and The Bank (TM) mass storage system. Each of these
devices may be attached to a Corvus network. The Rev B/H drives
may be attached to a Corvus multiplexer, or through a disk server
to an Omninet (TM) local area network. The OmniDrive and The Bank
have built~-in Omninet interfaces.

Although these devices: have very different hardware
characteristics, the software interface to each is very similar.
For example, one software disk driver can interface to all these
devices.

This chapter describes the functions supported by Corvus mass
storage devices. Each section describes the function and lists

the relevant commands. Where needed, additional explanatory text
follows.

The commands are described as a string of bytes to be sent to the
device, and a string of bytes that is the expected reply. The
format used to describe commands is shown in the following
exanmple:

Zorvus sSystems 1

Mass Storage Systems GTI Controller Functions

command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

Command

0/ 1 | BYTE | command code - 2h
1/ 3 | DADR | sector number
Result

In this example, the command described is the Read a sector
command. As you can see, the command length is 4 bytes, and the
expected result length is 257 bytes. This means that you send 4
bytes to the drive, and expect to receive 257 bytes in reply.
Each field of the command and result is described by its starting
offset in the string of bytes (indexed starting at 0), the length
of the field, and its type. Then a verbal description of the
contents of the field is given.

The first byte of any command is always the command code; the
value of the command code is given in the description column. In
this case, the command code for Read a sector is 2h. Whenever a
field has a fixed value, its value is given in the description
column.

In the case of an error, normally only one byte, the disk result
code, is received. Disk result codes are summarized in Appendix
B.

Chapter 2 describes the Omninet protocols used to send the

commands. Chapter 3 gives examples of sending commands over
Omninet and over flat cable.

Corvus Systemns . 2

Mass Storage Systems GTI Controller Functions

Figure 1.1:

Corvus Systems

)

Command name Code:Modifier Length Length
Read/Write Commands:
Read Sector (256 bytes) 02h 4 257
Write Sector (256 bytes) 03h 260 1
Read Sector (128 bytes) 12h 4 129
Read Sector (256 bytes) 22h 4 257
Read Sector (512 bytes) 32h 4 513
Read Sector (1024 bytes-Bank) 42h 4 1025
Write Sector (128 bytes) 13h 132 1
Write Sector (256 bytes) 23h 260 1
Write Sector (512 bytes) 33h 516 1
Write Sector (1024 bytes-Bank) 43h 1028 1
Record Write (Bank) 1l6h 2 1
Semaphore Commands:
Semaphore Lock OBh:01h 10 12
Semaphore Unlock OBh:11h 10 12
Semaphore Initialize 1Ah:10h 5 1
Semaphore Status lAh:41h 5 257
Pipe Commands:
Pipe Read 12Ah:20h 5 516
Pipe Write 1Ah:21h 517 12
Pipe Close 1Ah:40h 5 12
Pipe Status 1 1Ah:41h 5 513
Pipe Status 2 1Ah:41h 5 513
Pipe Status 0 1Ah:41h 5 1025
Pipe Open Write 1Bh:80h 10 12
Pipe Area Initialize 1Bh:AOh 10 12
Pipe Open Read 1Bh:COh 10 12
Active User Table Commands:
AddActive 34h:03h 18 2
DeleteActiveUsr (Rev B/H) 34h:00h 18 2
DeleteActiveNumber (OmniDrive) 34h:00h 18 2
DeleteActiveUsr (OmniDrive) 34h:01h 18 2
FindActive 34h:05h 18 17
ReadTempBlock C4h 2 513
WriteTempBlock B4h 514 1

Summary of Disk Commands by Function
(continued on next page ...

Mass Storage Systems GTI

Command name

Miscellaneous Commands:

Boot

Read Boot Block

Get Drive Parameters
Park heads (Rev H)
Park heads (OmniDrive)
Echo (OmniDrive,Bank)

Put Drive in Prep Mode:
Prep Mode Select
Prep Mode Commands:

Reset Drive

Format Drive (Rev B/H)
Format Drive (OmniDrive)
Fill Drive (OmniDrive)
Format Tape (Bank)
Reformat Track (Bank)
Verify (Rev B/H,OmniDrive)
Non-destructive Verify (Bank)
Destructive Verify (Bank)
Read Corvus Firmware
Write Corvus Firmware

Controller Functions

Command
Code:Modifier Length

14h 2
44h 3
10h 2
11h 514
80h 1
F4h 513

11lh 514

00h
Olh
0lh
81lh
0lh:01h
0lh:02h
07h
07h:02h
07h:01h
32h
33h

Ol
(]
PNV HOOWHWH

[&)]
[}

Result
Length

513
513
129

513

N

variable
10
10
513
1

Figure 1.1: Summary of Disk Commands by Function (cont.)

Corvus Systens

Mass Storage Systems GTI Read-Write Commands

READ-WRITE COMMANDS

Five sets of read-write commands are supported, each set
specifying a different sector size. Data can be read or written
in sectors of 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.
There are two sets of commands that support 256 byte sectors;
they are identical.

The Rev B/H controller and the OmniDrive controller use a
physical sector size of 512 bytes. When a host sends a write of
a sector size other than 512 bytes to the drive, the controller
first reads the entire physical sector, overlays the written data
onto the appropriate chunk of the physical sector, and then
writes the physical sector. It is therefore recommended that
hosts, where possible, use a write command of 512 bytes to
minimize overhead when writing to the drive.

The Bank physical sector size is 1024 bytes. When a host sends a
write of a sector size other than 1024 bytes to The Bank, the
data is buffered until the whole sector is.received; then the
data is written to the media. If any other commands are received
before this buffer is full, or if another sector is to be written
to, the controller performs as described above; that is, it reads
the whole physical sector, overlays the written data onto the
appropriate chunks of the physical sector, and then writes the
physical sector. It is therefore recommended that hosts, where
possible, use a write command of 1024 bytes to minimize overhead
when writing to The Bank.

The fact that The Bank buffers write commands has one other
ramification: the controller always returns 0 as the disk result
code, indicating a successful write. When it comes time for the
Bank to actually write the sector and an error is encountered, no
error status is reported to the host.

The read function always reads the whole physical sector and
returns the appropriate chunk of data. Unlike the write mode, no
performance penalty is paid when using any particular sector
size.

All of the read-write commands decribed below use a three byte

sector number as the disk address. The interpretation of sector
number (DADR) is described in the next section. .

Corvus Systems 5

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

Command

offset/Len| Type | Description

0/ 1 | BYTE | command code - 2h
1/ 3 | DADR | sector number
Result

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

Command
Offset/Len| Type | Description

Corvus Systems 6

Mass Storage Systems GTI

Command Name:

Read a sector (128 byte sector)

Command Length: 4 bytes

Result Length: 129 bytes

Command

Offset/Len| Type | Descriptiom
"0/ 1 | BYTE | command code - 1zn
1/ 3 | DADR | sector mumber
Result

Offset/Len| Type | Description
o/ 1 | BYTE | aisk result
"1/ 128 | ARRY | contents of sector

Command Name:

Write a sector (128 byte sector)

Command Length: 132 bytes

Result Length: 1 byte

Command

offset/Len| Type | Description
"0/ 1 | BYIE | command code - 13n
173 | DADR | sector mumber
4/ 128 | ARRY | data to be written
Result

Offset/Len| Type | Description
0,1 | BYIE | disk result

Corvus Systems

Read-Write Commands

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 22h
1/ 3 | DADR | sector number

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

Corvus Systems 8

Mass Storage Systems GTI

Conmmand Name

Read-Write Commands

¢ Read a sector (512 byte sector)

Command Length: 4 bytes

Result Length: 513 bytes

Command

offset/Len| Type | Deseription
"0, 1 | BYTE | command code - 320
1/5 | oapr | sector mumber
Result

offset/Len| Type | Description
"o /1 | BYTE | aiek resut
"1 /512 | ARRY | contents of sector

Command Name

! Write a sector (512 byte sector)

Command Length: 516 bytes

Result Length: 1 byte

Command

offset/len| Type | Deseription
0,1 | BYIE | command code - 33n
T1/5 | pabR | sector number
4 /512 | ARRY | data to be writtem
Result

offset/Len| Type | Description
o /1 | BYTE | aisk result T

e S W A AR G IS T IR D S S S S S GRS D G D IR A IR G D N GIN ST G P SR YIS SR G N GES NIV IR GRS TER SES Y DY W D GNP GNP D G A5 G G GD W S G G

Corvus Systems

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (1024 byte sector) (Bank only)

Command Length: 4 bytes

Result Length: 1025 bytes

Command

offset/Len| Type | Description
0,1 | BYTE | command code - 4zn
"1/3 | DADR | sector number
Result

Command Name: Write a sector (1024 byte sector) (Bank only)

Command Length: 1028 bytes
Result Length: 1 byte

0/ 1 | BYTE | command code - 43h

1/ 3 | DADR | sector number

Offset/Len| Type | Description

- ——— - - - - - - - S S T R D D D S D G S D D G D D S G GED G G G5 SN GNP WD SED Sas Gab G G G G G GES S R IR WS GG S S G

0/ 1 | BYTE | disk result

Corvus Systems 10

Mass Storage Systems GTI Read-Write Commands

LOGICAL SECTOR ADDRESS DECODING

On the Rev B/H drives, the three byte sector number specified in
a read or write command is decoded into a 4-bit drive number and
a 20-bit address. The decoding is described below:

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is the most significant nibble

of the address.
Byte 1, lower nibble, is the drive number (1 through 15).
Byte 2 is the least significant byte of the address.
Byte 3 is the middle byte of the address.

Thus to write to drive 1, address 02D348h, the host should send
to the controller these bytes:

21h, 48h, D3h

A 20-bit address allows the controller to address approximately 1
million sectors per drive, or 512MB using 512 byte sectors.
Virtual drives can be used to extend the addressing capabilities
of the Rev B/H controller; see the section titled "Vvirtual Drive
Table" later in this chapter.

For OmniDrive and The Bank, the three byte sector number is
treated as a 24-bit address; all three bytes are used to indicate
the address. The OmniDrive and Bank controllers can thus address
16 times more data than the Rev B/H controller, or approx1mate1y
8 gigabytes using 512 byte sectors. The three byte address is
decoded as follows:

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is bits 17-20 of the address.

Byte 1, lower nibble, is decremented by 1, and becomes
bits 21-24 of the address.

Byte 2 is the least significant byte of the address.

Byte 3 is the middle byte of the address.

Thus to write to an address, say 32D348h, the host should send to
the controller these bytes:

24h, 48h, D3h
The controller flips the nibbles in byte d, subtracts 10h from
the result and uses this value as the most significant byte of

the address. Byte 2 is used as the least significant byte and
byte 3 the middle byte.

Corvus Systems 11

Mass Storage Systems GTI Controller Functions

Note that for addresses of 20 bits or less, the two addressing
schemes are equivalent. For example, to write to drive 1,
address 2D348h, the host sends these bytes:

21h, 48h, D3h

The address spec1f1ed in the Read-Write commands is a sector
address, where the size of the sector is specified by the
command. For example, to read block 8 of the device, any of the
following commands can be used:

Command string Meaning

02h, 0Ol1lh, 10h, 0OOh sector 16 (256-byte sector)
12h, 0l1lh, 20h, 0OOh sector 32 (128-byte sector)

22h, 0l1h, 10h, OOh sector 16 (256-byte sector)
32h, 0l1h, 08h, 0OOh sector 8 (51l2-byte sector)
42h, 0l1h, 04h, 00h sector 4 (1024-byte sector; Bank only)

WRITE VERIFY OPTION

The OmniDrive provides the option of specifying write-verify or
non-write-verify. If the write-verify option is chosen, the
controller, after each write to the media, performs a read
operation of that sector to verify that the sector can be read
with a correct CRC. If the non-write-verify option is specified,
there is no read after write.

The tradeoff is between performance and reliability. The
write-verify costs at least an extra revolution of the disk but
it verifies that the data is recorded properly on the media. The
other provides higher performance without the assurance of data
integrity.

The option is represented by one byte in the firmware area. The
standard firmware release has this byte set to non-write-verify.
The option can be changed using the Corvus diagnostic program.

Rev B/H drives always use write-verify. The Bank always uses
non-write-verify.

FAST TRACKS (BANK ONLY)

A Bank Tape (TM) cartridge can be configured to use fast-track or
non-fast-track mode. In fast-track mode, a read completes much
faster than in non-fast-track mode. However, a write takes much
longer in fast-track mode than in non-fast-track mode. Fast-track
mode is therefore recommended for applications which require

heavy look-up of data, but little or no modification of the data

Corvus Systems 12

Mass Storage Systems GTI Controller Functions

the data.

In fast-track mode, the first 16 tracks of the user data area
(4MB) are redundantly recorded. For a 200MB tape, the controller
records each sector of data 8 times, once on each of 8 tracks;
each succeeding track has the data skewed 1/8 around the tape
loop. For a 100MB tape, the controller records each sector of
data 4 times on 4 tracks; each succeeding track has the data
skewed 1/4 around the tape loop.

When a sector is read, the controller determines where on the
track its head is, and reads from the closest sector. Thus, the
average read access time is 1/8 (or 1/4) that of the
non-fast-track mode.

There are two types of write to the fast tracks area: normal
write and record write. For normal write, the controller updates
all the redundant sectors in one pass. Thus, it takes an entire
revolution to complete one write. For record write, the host can
specify the redundant sector to be written. The sector specified
is used for all succeeding Write commands, until the next Record
Write command is received. This feature allows the host to write
to a whole track, then repeat the process for the redundant
tracks.

To turn record write on or off, use the Record Write command.

command Name: Turn on Record Write (Bank only)

Command Length: 2 bytes
Result Length: 1l by:e

- T G G S (R W A MNP WS s) D GBO SN SR (N . S SIS G NS UG SR NP LN D G NN GRS G GW WS NS AR SER SRS MG SN SER SUR GED GES SR SED SE SR GED SRS D I G S e

Offset/Len| Type | Description

- A W S S G e B TYY SER @ie CHD GEP W GMF GED GED GED GMR R CAB O LN GNS GED SED WND GRS GMN GND GHD M W GED GNP NP D VRS T SES GEN SR SUD GES NS UEE D UED WIS G4 GED W G G S s G e

0o/ 1 | BYTE | command code - 1l6h
1/1 | BYTE | sector number*
Result

- . D S G G W TV G U S GRS CES GWE SR G S (T TS GU A0S (U} U GED SN GER WIS SER D R FER S GHD G OFE SUS VR UNR SR TER SED S Am G4 G G G G S SN GED SER GED SN G G S5

* For a 200MB tape, valid sector numbers are 80h-87h, specifying
sector 0 through 7; for a 100MB tape, valid sector numbers are
8oh-83h, specifying sector 0 through 3.

Corvus Systems 13

Mass Storage Systems GTI Read-Write Commands

Command Name: Turn off Record Write (Bank only)

Command Length: 2 bytes
Result Length: 1 byte

Command

0/ 1 | BYTE | command code - 16h
1/1 | BYTE | 00h
Result

When using normal write, updating 100 sectors requires 100 tape
revolutions, one for each sector write. When updating many
ctonsecutive sectors, it may be faster to use record write. Iet's
assume you want to update sectors 100 to 199 on a 200MB tape.

You first issue a Record Write command for redundant sector 0
(80h), and then 100 sector write commands, one for each sector
100 to 199. Depending on the interleaving, this should take only
1l tape revolution. Next you issue a Record Write command for
redundant sector 1 (81h), and then the same 100 sector write
commands. Repeat this sequence for redundant sectors 2 through
7, and you should complete the update in only 8 tape revolutions,
as opposed to the 100 revolutions used in normal write.

SEMAPHORES

Semaphores provide an indivisible test and set operation for use
by application programs. See chapter 5 for examples of how to
use semaphores.

The semaphore commands are listed below:

Semaphore Lock

Semaphore Unlock
Initialize Semaphore Table
Semaphore Status

Any host can, at any time, request to lock a semaphore. If the

specified semaphore is not already locked, the controller locks
the semaphore. If a semaphore is already locked, the application

Corvus Systenms 14

Semaphores

program using the semaphores can continue to poll the semaphore
table by resending the Lock command until the desired semaphore
is no longer locked.

The Semaphore Unlock command always unlocks the semaphore.

The status of the semaphore prior to each operation is also
returned to provide for a full test-set or test-clear operation.

A semaphore can be any 8-byte name, except for 8 bytes of 20h
(ASCII space character). There is no limit on the number of
semaphores that may exist in a given application or network;:
however, only 32 semaphores may be locked at any one time (on
each server).

Two semaphores are equivalent only if each character in the name
is exactly the same. For example, semaphore 'CORVUS1ll' is
different than semaphore 'corvusll', which is different than
'Corvusll'. The characters do not have to be printing
characters; eight bytes of 10h (ASCII LF character) is a legal
semaphore name.

OmniDrive and The Bank support a wild card character in semaphore
hames. The character 00h (ASCII NUL character) matches any other
character in semaphore lock and unlock operations.

The Initialize Semaphore Table command clears the semaphore
table, which is equivalent to unlocking all the semaphores. The
semaphore table can be initialized by any processor, but this
should only be performed on system~wide initialization or for
recovery from error conditions.

The Semaphore Status command returns the semaphore table, which
can then be examined to see which semaphores are locked.

Corvus Systems 15

Semaphores

Command Name: Semaphore lock

command Length: 10 bytes
Result Length: 12 bytes

Command

0/ 1 | BYTE | command code - OBh

1/ 1 | BYTE | Olh

2/ 8 | ARRY | semaphore name
Result

0/ 1 | BYTE | disk result
1/ 1 | BYTE | semaphore result
2 / 10 | ARRY | unused (no meaning)

Corvus Systems 16

Semaphores

Command Name: Semaphore unlock

Command Length: 10 bytes
Result Length: 12 bytes

Offset/Len| Type | Description

0/ 1 | BYTE | command code - OBh

1/ 2 | BYTE | 11h

2/ 8 | ARRY | semaphore name
Result

Offset/Len| Type | Description

0/ 1 | BYTE | disk result
1,1 | BYTE | semaphore result
2 / 10 | ARRY | unused (no meaning)

D D G AR s ATV WS WA S S R GED SN IR GIS WM G D GE) CIN UIS G GED GED GID G D SIS G TI G R G R G D S W W G G S N D D G G W S G W

Command Name: Initialize semaphore table

Ccommand Length: 5 bytes
Result Length: 1 byte

Command

Offset/Len| Type | Description

- < U S S GED P W P G W R GED IR D D I S D R IR W SIS GED D D TS S G G LS AV GER SN NN GED RN 00 SNV THD TED SUS SR WIS W WED WUS SN GED SN W SN G G

0o/ 1 | BYTE | command code - 1lAh

1/1 | BYTE | 10h

2/ 3 | ARRY | don't care =~ use 00Oh
Result

E N S WD G WD e R SES MR D G TUD Gl GNS G WS WS D EMD GED ENV GRS MR SN GFS YR GNG WU A GNP G SOF TS MU SRR GMS SEM W GEV GNS N G WIS b S G N G SV G G G G

Corvus Systens 17

Semaphores

Command Name: Semaphore status

Command Length: 5 bytes
Result Length: 257 bytes

Command

0/ 1 | BYTE | command code - 1Ah

1 /1 | BYTE | 41h

2 /1 | BYTE | 03h

3/ 2 | ARRY | don't care - use 0O0Oh
Result

Semaphore results

Value Meaning
0 Oh Semaphore Not Set/no error
128 80h Semaphore Set

253 FDh Semaphore table full
254 FEh Error on semaphore table read/write
255 FFh Semaphore not found

Implementation Details For S8emaphores

The semaphores are implemented using a lookup table containing an
8-byte entry for each of the 32 possible semaphores. A used
entry in the table indicates that the semaphore is locked.

Unused table entries are represented by 8 bytes of 20h (ASCII
space character).

When a Lock command is received, the controller searches the

table for a matching entry. If one is found, a Semaphore Set
status (80h) is returned. Otherwise, the semaphore is written

Corvus Systems 18

Semaphores

over the first empty entry, and a status of Semaphore Not Set (0)
is returned.

When an Unlock command is received, the controller searches the
table for a matching entry. If one is found, it is overwritten
with blanks, and a status of Semaphore Set (80h) is returned.
Otherwise, a status of Semaphore Not Set (0) is returned.

The format of the semaphore table is shown below. See Appendix A
for the location of the semaphore table.

Table layout Entry layout

o o e e e e e e + byte 0 e e +
| semaphore #1 | | | 1lst byte |
e + | += -+
| semaphore #2 |<====ccceea- + | 2nd byte |
et + | +- -+
I I l I |
I I I | I
tommc e ———— + | += -+
| semaphore #31| | | 7th byte |
e + | +=- -+
| semaphore #32| | | 8th byte |
dmmme— e ——— + byte 255 +-=< t==-emeemeeeea-- +

For Rev B/H drives, the semaphore table is initialized to blanks
only when the firmware is rewritten or when an Initialize
Semaphore Table command is received. For OmniDrives and Banks,
the semaphore table is initialized at power up or when an
Initialize Semaphore Table command is received.

Performance Considerations When Using Semaphores

For Rev B/H drives, a semaphore operation causes 2 disk reads,
and 0 or 1 disk writes. First the semaphore block must be read
from the firmware area. If the Lock or Unlock is successful,
then the semaphore table must be written back to the disk.
Finally, the dispatcher code must be reloaded from the firmware
area.

For OmniDrives and Banks, a semaphore operation causes no disk

I/0, as the semaphore table is maintained in the controller RAM.
The table is not saved when the device is powered off.

Corvus Systems 19

Mass Storage Systems GTI Pipes

PIPES

Pipes provide synchronized access to a reserved area of the disk.
Any computer can use the pipes commands to read or write data to
the pipes area at any time, and not worry about conflicting with
another computer's read or write to the pipes area. See chapter
6 for examples of how to use pipes.

The pipe commands are listed below:

Pipe Open for Write
Pipe Open for Read
Pipe Write

Pipe Read

Pipe Close

Pipe Purge

Pipe Status

Pipe Area Initialize

The pipes area must be initialized before any other pipe commands
are used.

The Pipe Area Initialize command specifies the pipe area starting
block number and the length in number of blocks. Note that the
block size is 512 bytes for the Bank as well as the OmniDrive and
Rev B/H drives. The pipes area must be entirely within the first
32k blocks of the tape or disk; the starting block number plus
the number of blocks must be less than 32k. The Pipe Area
Initialize command does not actually write anything to the pipes
area, other than the pipes tables.

The normal sequence of events in using the pipes area is as
follows:

One host opens the pipe for write. It then uses Pipe Write
commands to write blocks to the pipe. When it has written all
the data, it uses the Pipe Close command to close the pipe.

Later on, either the same host or some other host issues a Pipe
Open for Read command. It uses Pipe Read commands to read data
from the pipe. When done reading, it issues a Pipe Close
command. If the pipe is empty (i.e., all of the data has been
read), it is deleted. If data is still remaining, the host can
open the pipe again later to finish reading the data.

Each time a pipe is opened for write, a new pipe is created.
When a Pipe Open for Read command is received, the lowest
numbered closed pipe with the specified name is opened.

The Pipe Purge command can be used to purge any unwanted pipes.
The Pipe Status command is used to view the state of the
internally managed pipe tables.

Corvus Systems 20

Mass Storage Systems GTI Pipes

command Name: Pipe Open for Write

Command Length: 10 bytes
Result Length: 12 bytes

0/ 1 | BYTE | command code -~ 1Bh
1 /1 | BYTE | 80h
2/ 8 | BSTR | pipe name

Result

6/ 1 | BYTE | disk result
Ty U evee | pipe reswit
T2V TBurE | pipe number (1-s2)
371 Fiac | pipe state - see below
T2 78 U ARRY | unused (mo meaning)

i R . e Y Rt T G P G GNP W SES NS M R AUY M GE GND WP SN N SUR WS WIS I €U T TS GEP GE G GER SN SR NS GRm GHL SN SR A SIS GNP G SN EED SR GHr GRS GE SN G G G

Corvus Systens 21

Mass Storage Systems GTI Pipes

Command Name: Pipe Open for Read

Command Length: 10 bytes
Result Length: 12 bytes

Command

Offset/Len| Type | Deseription
"0/ 1 | BYIE | command code - 1Bh
1,1 g BvmE | con TS
" 2/8 | BSTR | pipe mame T
Result

0/ 1 | BYTE | disk result
1,1 | BYIE | pipe resalt T
"2/ 1 | BYIE | pipe numper (1-62)
3 /1 | FLAG | pipe state - see balow
"4 /8 | ARRY | unused (mo meaning)

Corvus Systems 22

Mass Storage Systems GTI Pipes

Command Name: Pipe Read

Command Length: 5 bytes
Result Length: 516 bytes

Command

Offset/Len| Type | Description

T D S G S G SN W W SE W G G > WD D S I G G (T D D WY S G S Y W W S R A WY VN AT G I NRS G GEY D D G TP IR D ED D G M G e

0/ 1 | BYTE | command code = 1lAh

1 /1 | BYTE | 20h

2 /1 | BYTE | pipe number

3/ 2 | FWRD | data length - 00h, 02h (512 bytes)
Result

I e Y AT D R D G D G W LD G TS CEN WD GED hw (HD GEY WS (M LN EES BB YW GG UL BB EEB G AN S5 GUD GRS S M G G EEe GE Ge M GH G SN GEY GU GIE G S SN e S

0/ i | BYTE | disk result
1/ 1 | BYTE | pipe result
2/ 2 ! FWRD | number of bytes read - 00h, 02h (512 bytes)

. AN I RS G B W LT M GO VS O CHR EMD CED GEp WES GED Sha GRS WS (W GO MR GES GHD GHE GAM G M G SN SN TED GEP GEP GNE EHN GED GES GUD SR GHD M GEn NS R GN I GEb W @I GED BED EEN GW W

Corvus “ygtems 23

Mass Storage Systems GTI

Command Name:

Command Length:
Result Length:

Command

Pipe Write

517 bytes
12 bytes

Pipes

-—— - —— - - - - S S S G D D D SIS SI TID W WD D D G S G D D D G S S S S W D P R W G G =

Offset/Len|

Description

command code = 1lAh

data length - 00h, 02h (512 bytes)

number of bytes written - 00h,

02h (512 bytes)

Corvus Systems

24

Mass Storage Systems GTI

Command Name:

Command Length:
Result Length:

Command

Pipe Close, Pipe Purge

5 bytes
2 bytes

Pipes

FEh - close write
FDh - close read
00h - purge

Corvus Systems

25

Mass Storage Systems GTI Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

"0/ 1 | BYTE | commana code - 1an T

Ty Uevre) ewm T

T /1 | BYIE | olh - Pipe Name table
| | 02h - Pipe Pointer table

3,2 | ARRY | don't care - use oon

Result

Corvus Systems 26

Mass Storage Systems GTI Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 1025 bytes

Command

o/ 1 | BYTE | command code -~ lAh

1/1 | BYTE | 41h

2 /1 | BYTE | OOh

3/ 2 | ARRY | don't care - use 00h
Result

This is the only command which returns more than 530 bytes. If
you are using a general purpose command buffer for sending device
commands, you may wish to use the version of the Pipe Status
command which returns either the Pipe Name table or the Pipe
Pointer table, so that you do not have to declare a 1025-byte
buffer,

Corvus Systems 27

Mass Storage Systems GTI Pipes

Command Name: Pipe Area Initialize

Command Length: 10 bytes
Result Length: 2 bytes

0/ 1 | BYTE | command code - 1Bh
Yy Uevee | aen T
T2/ 2 | FwRD | starting block mumber
T2 T\ FRD | length in blocks
T /4 1 ARRY | don't care - use oon
Result

Starting block number + Length in blocks must be less than 32k.

Pipe state flag (returned on Pipe Open)

Bit # Meaning

bit 7 l=contains data / O=empty
bit 1 l=open for read

bit 0 l=open for write

Value Meaning

0 O0Oh No error.

8 08h Tried to read an empty pipe.

9 0%h Pipe not open for read or write.
10 OAh Tried to write to a full pipe.
11 O0Bh Tried to open an open pipe.

12 och Pipe does not exist.

13 O0bDh Pipe buffer full.

14 OEh Illegal pipe command.

15 OFh Pipes area not initialized.

Corvus Systems 28

Mass Storage Systems GTI Pipes

Implementation Details For Pipes

Internally, the pipes area is managed by two tables: a Pipe Name
Table and a Pipe Pointer Table. These tables are stored in
different areas on the various disk devices; see Appendix A. The
host can retrieve these tables by sending a Pipe Status command.

The Pipe Name Table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use.
The first name is WOOFWOOF and the last name is FOOWFOOW. An
entry of all blanks (20h) indicates an unused entry.

The format of the Pipe Name Table is shown below:

pipe number 0 | WOOFWOOF |

pipe number 1 |

pipe number 62|
Fomm—mm e ——— + byte 504

pipe number 63| FOOWFOOW |

The Pipe Pointer Table also contains space for 64 entries of 8
bytes each, each entry being formatted as shown below:

Rev B/H OomniDrive/Bank

tmmmmem e ——— + tomm— e +
| pipe number | byte 0O | pipe number |
e e Lt + tomm e e +
| starting (nsb)| byte 1 | starting (0) |
+e -+ += -+
| byte | | block (msb) |
+- -+ +- -+
| address (1sb) | | address (1sb) |
tommmm— e ——— + e L LT +
| ending (msb) | byte 4 | ending (0) |
+- -+ +- -+
| byte | | block (msb) |
+= -+ += -+
| address (1sb) | | address (1sb) |
tomm e, ———— + e +
| pipe state | byte 7 | pipe state |
tormmmm— e + tommm e e +

While the format of the Pipe Pointer table on the disk is
different for the Rev B/H drives than it is for OmniDrive and
Bank, the table returned by the Pipe Status command always has

Corvus Systems 29

Mass Storage Systems GTI Pipes

the Rev B/H format. That is, the OmniDrive and Bank convert the
disk format to the Rev B/H format for the Pipe Status command.

Pipe number (byte 0) is an index into the Pipe Name Table. A
pipe number of 0 indicates the first entry in the Pipe Name
Table, and a pipe number of 63 indicates the last entry in the
Pipe Name table.

Entries in the Pipe Pointer Table are ordered by starting
address. Unlike the Pipe Name table, where unused entries are
interspersed with used entries, all of the unused entries in the
Pipe Pointer table occur at the end of the table. The entry with
pipe number 63 marks the end of the used entries.

For the Rev B/H drives, the starting and ending byte addresses
are absolute disk byte addresses. Each should be divided by 512
to get an absolute block address.

The Pipe State is a flag which is interpreted as shown below:

bit # Meaning

bit 7 l=contains data / O=empty
bit 1 l=open for read

bit 0 l=open for write

The first entry in the Pipe Pointer Table always looks like the
following, which corresponds to the WOOFWOOF entry in the Pipe
Name Table:

Rev B/H OmniDrive/Bank
tmmmmem e + e L +
| pipe number = 0 | byte O | pipe number = 0 |
tommrmcc e c e + e e T T +
| starting byte | byte 1 | starting block |
+= -+ +- -+
| address of pipes | | address of pipes |
+- -+ +- -
| area | | area |
R + e +
| starting byte | byte 4 | same as bytes |
+= + += +
| address of pipes | | 1 through 3 |
+= -+ += -+
| area + 1024 | | : |
e LT L PP P + e +
| pipe state = 80h | byte 7 | pipe state = 80h |
e + e Lt T e +

Corvus Systemns 30

Mass Storage Systems GTI Pipes

The last entry in the Pipe Pointer Table always looks like the
following, which corresponds to the FOOWFOOW entry in the Pipe
Name Table) :

Rev B/H OmniDrive/Bank
e + e +
| pipe number = 63 | byte 0 | pipe number = 63 |
e + e +
| ending byte | byte 1 | ending block |
= -+ +=~ -+
| address of pipes | | address of pipes |
+= -+ +- -+
| area | | area |
tmm——— e ——— + et +
| same as bytes | byte 4 | same as bytes |
+- + += +
| 1 through 3 | | 1 through 3 |
+- -t +=- -+
| I | l
trm— e — e ———————— + e LT LT +
{ pipe state = 80h | byte 7 | pipe state = 80h |
L e T + Rt +

Whenever a Pipe Area Initialize command is received, the pipes
tables are initialized with the entries for pipes 0 and 63 shown
above, and all other entries unused. The pipes area can be
deleted by rewriting the firmware.

Corvus Systems 31

Mass Storage Systems GTI Pipes

The following example shows a typical state of the pipe tables.
It shows 3 existing pipes, two called PRINTER and one called
FASTLP.

Pipe Pointer table offset Pipe Name table
tomm————————— e ————— + tmmm——— e ————— +
| entry for pipe 0 | 0 | WOOFWOOF |
tmmm e ———————— + tm—mm e ————— +
| entry for pipe 1 | 1 | PRINTER
ettt L L L L L L DL Dl + ettt T +
| entry for pipe 6 | 2 | FASTLP |
ettt LT + fmm———— e +
| entry for pipe 2 | 3 | blanks |
fmmmm———— - + fmmmm = +
| entry for pipe 63 | 4 | blanks |
tmmmmmce e ——— + tmmmmm e - +
| O's | 5 | blanks |
tomm—— e ———— + tmmm—m e ——— +
| o's | 6 | PRINTER |
tmmm e — e ———— + tmmm——e e ——— +
I I I I
| | I |
ittt L L L L Ll + tm——mmmm e +
| o's | 63 | FOOWFOOW |
tmmmme e ———— + tmmmm e - +

Individual Pipe Disk Spﬁce Allocation

The pipes area consists of used space and holes (unused space).
There are two kinds of holes:

Active hole -- a contiguous area of unused pipe space
bounded on the low address end by an open for writing pipe.

ettt +
| open for |
| writing |
I pipe

- ———————-———.-—
| the open pipe in front of the hole
!

I

can grow into this region.

H—+—— +—

Corvus Systemns 32

Mass Storage Systems GTI Pipes

Inactive hole -- a contiguous area of unused pipe space
bounded on the low address end by the end of a closed
pipe or the end of an open for reading pipe.

I |
- - -
| open for

| reading or

| closed pipe

trmr e — e —————————
I
|
+

inactive
hole

the pipe in front of the hole
cannot grow.

+——+———+

I |

New pipe allocations are made by examining all the holes in the
pipe area. The allocator looks for the larger of: (1) the
largest inactive hole or (2) half the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

When an open for writing pipe hits the end of a hole (that is, it
bumps into an existing pipe), the error code, tried to write to a
full pipe (0Ah), is returned. This can happen even if there is
space remaining in other holes.

Performance Considerations When Using Pipes

On a Rev B/H drive, a Pipe Write results in 2 disk reads, and 2
disk writes. First, the pipes code is overlayed into the
controller RAM; then the data is written and the Pipe Pointer
Table rewritten; finally, the dispatcher code is reloaded. A
Pipe Read is similar, only there are 3 disk reads and 1 disk
write. Since the controller code is located in the firmware
area, and the pipes area is in the user area of the drive, a pipe
operation can cause considerable head movement.

For OmniDrives and Banks, the pipes controller code is loaded at
power-on time, and does not have to be swapped in and out. Also,
the Pipe Name Table and the Pipe Pointer Table are located in the
firmware area. For the OmniDrive, the tables are written back to
the drive only when a pipe is closed, so a Pipe Read is 1 disk
read operation, and a Pipe Write is 1 disk write operation. For
the Bank, the pipe tables are only written to the media when the
Bank is ready to turn off the motor (see section titled "Changing
Bank Tapes" later in this chapter).

Corvus Systems 33

Mass Storage Systems GTI Active User Table

ACTIVE USER TABLE

The Active User Table is used by Corvus applications software to
keep track of the active devices on the network. At any given
time, it should contain a list of those users who are connected
to the network. See the section titled "Active User Table" in
Chapter 2 for more explanation.

The Bank does not support the Active User Table.
There are six commands supported:

AddActive

DeleteActiveUsr

DeleteActiveNumber (OmniDrive only)
FindActive

ReadTempBlock

WriteTempBlock

The AddActive command adds a user to the table. The host
specifies the user name, the Omninet address, and the device
type. See Appendix B for a list of device types.

The DeleteActiveUsr command deletes a user from the table. Note
that the command code for DeleteActiveUsr is different for the
Rev B/H drives than it is for the OmniDrive.

The DeleteActiveNumber command deletes all users with the
specified Omninet address from the table (OmniDrive only).

The FindActive command returns the Omninet address and the device
type of the user with the specified name.

The ReadTempBlock command can be used to read the entire Active
User Table, and the WriteTempBlock can be used to initialize the
Active User Table.

Corvus Systems 34

Mass Storage Systems GTI Active User Table

Command Name: Add Active

Command Length: 18 bytes
Result Length: 2 bytes

Command

12 / 1 | BYTE | host Omninet address

13 / 1 | BYTE | host device type

14 / 4 | ARRY | unused - use 0O's
Result

Corvus Systenms 35

Mass Storage Systems GTI Active User Table

Command Name: Delete Active User (Rev B/H drives only)

Command Length: 18 bytes
Result Length: 2 bytes

Command

0/ 1 | BYTE | command code - 34h

1/1 | BYTE | 00Oh

2 /10 | BSTR | name

12 / 6 | ARRY | unused - use 0O's
Result

Offset/Len| Type | Description

Corvus Systems

36

Mass Storage Systems GTI : Active User Table

Command Name: Delete Active User (OmniDrive only)

Command Length: 18 bytes
Result Length: 2 bytes

Command

G D T G G S G D G R Ny SRS G S e S D SER SIS GED G D WD GED GER N W SN Nmb VR W SN WD GES GNR GOR SIS GED ED BSe GAD NNP SN G SED SER GG Gin e S = GE

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 34h

1 /1 | BYTE | Ol1lh

2 /10 | BSTR | name

12 / 6 | ARRY | unused - use 0's
Result

T R D G S WD W D G SED GNP GNP NP GES WEE G T SER S G WS (NS N SED GEM GED WS G BN GNP N VT G AN M Y W W NN S GG S I G SN GER IS GEs She A G oW S

Corvus Systems 37

Mass Storage Systems GTI Active User Table

Command Name: Delete Active Number (OmniDrive only)

Command Length: 18 bytes
Result Length: 2 bytes

Command

"o/ 1 | BYrE | command code - 3sh
Ty VeveE | oom T
T2/ 1o | ARRY | unused - uwse o's
12 ;1 | BYIE | host omminet address
13,5 | ARRY | unused - use 0's
Result

Corvus Systems 38

Mass Storage Systems GTI

Command Name:

Command Length: 18 bytes

Result Length: 17 bytes

Command

Offset/Len| Type | Description
"0 /1 | BYTE | command code - 3en
1,1 | BvEE | osm T
2710 | BSTR | mame T
12 /6 | ARRY | unused - wse o's "
Result

Offset/Len| Type | Description
0/ 1 | BYTE | disk result T
1/ 1 | BYTE | first byte of name, or table result
279 | BSTR | remaining bytes of name
11/ 1 | BYIE | host omminmet address
12 /1 | BYTE | host device type
13/ 4 | ARRY | unusea TTTTTTTTTTTTT

Corvus Systems

Active User Table

Find Active

39

Mass Storage Systems GTI Active User Table

Command Name: Read Temp Block

Command Length: 2 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - C4h
1 /1 | BYTE | block number - 0 to 6 for Rev B/H,

| 0 to 3 for OmniDrive

Command Name: Write Temp Block

Command Length: 514 bytes
Result Length: 1l bytes

1/1 | BYTE | block number - 0 to 6 for Rev B/H,
| 0 to 3 for OmniDrive

Corvus Systems 40

Mass Storage Systems GTI Active User Table

Table results

Value Meaning

0 Ok.

1 No room to add.
2 Duplicate name.
3 User not found.

Implementation Details For The Active User Table

The Active User Table implementation is similar to semaphores, in
that an unused entry is indicated by blanks. When an AddActive
command is received, the controller searches the table for an
entry with a matching name. If one is found, the entry is
overwritten with the new data, and a table result of duplicate
name (2) is returned. If no matching entry is found, the first
entry with blanks is overwritten with the specified data, and a
status of Ok (0) is returned.

For DelectActiveUsr, the first entry with a matching name is
overwritten with blanks. For DeleteActiveNumber, all entries
with matching Omninet addresses are overwritten with blanks.

The table consists of four blocks, located in the firmware area.

The blocks are numbered 0 to 3. Each table entry is 16 bytes
long, as shown below:

Corvus Systens 41

Mass Storage Systems GTI Boot Commands

Table layout

e i + block 0

| entry #1 |

et L L T LT +

| | Entry layout

= = f==< tommmmmmm———————— +

| | | | name | byte 0
tmmmm e ————— + [+-~ -+

I entry #32 | I I I

tm————r - + block 1 | = =

I entry #33 I I | I
trm——— e —————— + I +- -+

I I I I | byte 9
= = mm—m—————— + ittt L +

= = | |Omninet address| byte 10
I I I +

trmmm— e + block 3 | | device type | byte 11
| entry #97 | | ‘o en e +
Rttt DD D bl + | | unused | byte 12
I I I = (0's) =

= = | | | byte 15
| | I +
ettt +

| entry #128 |

ettt bttt +

Omninet address is 0 to 63. Device types are listed in Appendix
B.

The normal initialization of the Active User table is described

in the section titled "Active User Table" in Chapter 2. The table
can also be initialized by rewriting the firmware, or by issuing
Write Temp Block commands.

BOOTING

There are two commands which provide a boot function. The
purpose of these commands is to provide a machine independent
means of booting a host computer.

The first boot command, called the Boot command (14h), was
Corvus' first attempt to provide a boot function. The Boot
command was not flexible enough, so a second boot command, the
Read Boot Block command (44h), was added.

The first Boot command is used by Corvus to support Apple II (TM)
computers and Corvus Concept (TM) workstations. The Read Boot Block
command is used to support all other computers. Each computer is
assigned a computer number by Corvus. See Appendix B for a list

of the currently assigned computer numbers.

Corvus Systems 42

Mass Storage Systems GTI Boot Commands

Both boot commands return a block of 512 bytes to the host
computer. This block normally contains boot code for the
computer, but can be used for whatever the particular computer
requires.

In order to use the boot commands, an application program must be
written which sets up the data structures used by the boot
commands. Corvus provides such an application program, called
BOOTMGR, with its Constellation II software. Refer to the manual
titled Constellation Software General Technical Information for
more information on how Corvus software uses the boot commands.

Command Name: Boot

Command Length: 2 bytes
Result Length: 513 bytes

Command

- D D D D G G G D G G N D D D G S D R D D SR N TE G S SN N S G S GER SN U S N W AN P RN G GN W W W e GEP RER SW G S SEE G s S

0/ 1 | BYTE | command code ~ 14h
1 /1 | BYTE | boot block number (0-7)
Result

S D G S D D G I R G G G G S S S G GED G WS W GEL GEL GO WP WD W W S T, WED R R A s S O W (NS W S R N SN NS G G G G s

Offset/Len| Type | Description

D D G D D D G D G b S D S G G W S G G D D Gl G G T W WD N S G S SH G A A T WD MEN G GwS SN GAS G SED AN AN R N W WS G G e G

0/ 1 | BYTE | disk result

- S I Gl = G GhD D GED SR W RS I S IS S S G D D UM W M D GEP GMe P T S W SR G Ghe Gt WS G e ST G R D MR GED GAD GaE SEe EEe WS G G WS S =

Corvus Systems 43

Mass Storage Systems GTI Boot Commands

Command Name: Read Boot Block

Command Length: 3 bytes
Result Length: 513 bytes

Command

0/ 1 | BYTE | command code - 44h
1/1 | BYTE | computer number (See Appendix B)
2/ 1 | BYTE | block number

Result

Offset/Len| Type | Description

0/ 1 | BYTE | disk result*

* If the disk result = FFh, the block could not be found.

Implementation Details For Boot Commands

For the Boot command, the boot blocks are located in the firmware
area (see Appendix A for exact locations). Blocks 0 through 3
contain 6502 code for the Apple II, and blocks 4 through 7
contain 68000 code for the Corvus Concept. These blocks are
included in the firmware files distributed by Corvus.

For the Read Boot Block command, the following data structures
are used:

Block 8, bytes 36 - 39 contain the absolute block address of the

Corvus volume. The Boot Table is located 6 blocks past this
location. The format of the Boot Table is described below:

Corvus Systems 44

Mass Storage Systems GTI Boot Commands

Table format

tmr e ————————— +

| entry #0 | block 0

toem e ———— + Entry format

| | tl Fmmmeecc e ——————— +

= = | | address (msb) | byte O
| | Cmmemmccwce—— + + - -+
Foem—— e —————— ———t | | address (lsb) | byte 1
| entry #127 | +=< tmmmmmccnc———————— +
fmm——————————————— +

| entry #128 | block 1

o o o e e e e +

I I

| |

tommm s ———— +

| entry #255 |

tom——— e —— e ——— +

The address is a relative block address which is added to the
Boot Table address. The result is the block number of the oOth
block of boot code. The block number specified in the Read Boot
Block command is added to this result to get the absolute block
address of the data to be returned. Thus, the block address of
the data returned is computed as follows:

Boot Table address + boot code address + boot block #
(contents of block 8, (from Boot Table) (from Read Boot
bytes 36-39, + 6) Block command)

DRIVE PARAMETERS

The Get Drive Parameters command can be used by application
programs to find out the user-accessible size of the drive
(device capacity) and other device specific information. The
format given differs slightly from that used for other commands:
the first page shows the information that is returned from all
devices and the second page shows the device specific
information.

Corvus Systems 45

Mass Storage Systems GTI Drive Parameters

Command Name: Get drive parameters

Command Length: 2 bytes
Result Length: 129 bytes

Command

o/ 1 | BYTE | command code - 10h
1 /1 | BYTE | drive number (starts at 1)
Result

0/ 1 | BYTE | disk result
"1/ 32 | BSTR | firmware message
33 /1 | BYTE | ROM version
34/ 4 | ARRY | track information (see below)
38 /3 | FAD3 | capacity in 512 byte blocks

Table information (see below)

I |

58 / 12 | | MUX parameters

70 / 6 | | pipes information

76 / 14 | | virtual drive table

90 / 16 | | LSI-11 information

106 / 1 | BYTE | physical drive number

107 / 3 | FAD3 | capacity of physical drive
110 / 1 | BYTE | drive type (see below)

111 / 6 | ARRY | tape information (see below)
117 / 2 | WORD | media id (see below)
119 / 1 | BYTE | maximum number of bad tracks (see below)
120 / 8 | ARRY | unused (no meaning)

Corvus Systenms » 46

Mass Storage Systems GTI Drive Parameters

The table below shows the meanings of the status bytes that are
different for the various device types.

flag (=1 fast
tracks on)

OIS W B 6 D VIR G K A A D AR W NS S G GEN G WD FER W Vb W S GED Gl W IR SEN SN G G G WS AU WD TR W STS W e GES TR G R W) SR W . O D GAG WIS I G W GEe M G M Grw e W e G e

Offset/Len| Type | Rev B/H Drives | OmniDrive | Bank
35 / 1 | BYTE | sectors/track | sectors/track | sectors/track
e e e e e e e e e e e e e e e e e | (1sb,msb)
36 / 1 | BYTE | tracks/cylinder | tracks/cylinder|
37 / 2 | FWRD | cylinders/drive | cylinders/drive| tracks/tape
58 / 12 | ARRY | MUX parameters | unused | unused
70 2 | FWRD | pipe name tbl ptr | pipe area ptr | pipe area ptr
72 2 | FWRD | pipe pointer tbl | pipe area size |pipe area size
I I ptr I I
74 2 | FWRD | pipe area size | unused | unused
76 / 14 | ARRY | Virtual drive tbl | unused | unused
90 8 | ARRY | LSI-11 VDO table | unused | unused
g8 8 | ARRY | LSI-11 spared tbl | unused | unused
110 / 1 | BYTE | unused | drive type | drive type
I I I | (82H)
111 / 3 | FAD3 | unused | unused | *tape life
| | | | (# of minutes)
114 2 | FWRD | unused | unused start/stop
| | | count
116 / 1 | FLAG | unused |
I I !
| I I

|

unused | fast track
I
I

117 / 2 | WORD | unused | media id | media id
119 / 2 | BYTE | unused | max # of bad | reserved
| | | tracks |

A B M T 8 G A6 e IWR T G A T G S R AR WS MM SN WS MR AUS I D WER MR SRR SLU FAB S S QAR SRR Sh KOG NS WG BN SOR D iR SR TR M W W WA W AN RS GED W Rr 07 R MiE M GID WS D P W e S G e o

* The tape life is specified at 500 hours and 2000 start/stops

Zorvus Systems 47

Mass Storage Systems GTI Park Command

PARKING THE HEADS
Rev B drives do not require parking of heads.
The Rev H and OmniDrives provide a firmware command that allows a
host to instruct a drive to park its heads in a landing zone or
cylinder. This command is used in preparing the drive for
shipping.
The landing (or parking) cylinder is a reserved cylinder for Rev
H drives; for OmniDrives, the landing cylinder is specified in
the disk parameter block of each drive. Some drives
automatically park the heads during power off; the landing
cylinder in this case is specified as OFFFFh. No actual movement
of the heads is performed when a park command is sent to one of
these drives.
The park command only positions the heads over the landing
cylinder; it does not turn off the motor. When the drive is
parked, it is offline to the network, and no host can communicate
with it. The drive stays parked until it is reset.

Command Name: Park the heads (Rev H Drive ONLY)

Command Length: 514 bytes
Result Length: 1 bytes

Command

This is really a special Prep block.

Corvus Systems 48

Mass Storage Systems GTI Park Command

Command Name: Park the heads (OmniDrive ONLY)

Command Length: 1 byte
Result Length: 1 byte

Command

S D L S W e 0 i WD G D W G W M W S G WD S W €S W P R S0 B WA W G . G e WP G e W R S M = G —— = .

Offset/Len| Type | Description

O D S S0 SR U G0 ST SR G S Gn G D e A S WD D WD GRS W (S S G G G S GED G AR M G S W GSF E W S M W s AV W M GER GES N GEN S Ge G W e e e e

T D S U D G SR N T e S G S G G GD W S G T G S U5 G U SO FED S A GRS T R G UL U G S S . . G G e e —

RO D D R G SR M0 G R G D G D G GAS SN GG SR G (NS D D GRS Wan w GEu T U TS D W W W G a4 A - — N W - o - —

CHANGING BANK TAPES OR POWERING OFF The Bank

The Bank Tape is continuously looping. While the motor is on,
the tape cannot be removed. If the tape is not accessed for
about 1 minute 15 seconds, The Bank goes into a "shut down" mode.
The controller flushes tape information back to the firmware
area, seeks to track 0, then turns off the motor. At this point,
the tape can be removed.

There is a reset switch on The Bank which can be used to force

the "shut down" sequence. However, this switch should only be
used when absolutely necessary.

CHECKING DRIVE INTERFACE

The Echo command can be used to check the interface to the drive.
The host sends 512 bytes to the drive, and expects to get the
same 512 bytes back.

Corvus Systems 49

Mass Storage Systems GTI Miscellaneous Commands

Command Name: Echo (OmniDrive/Bank ONLY)

Command Length: 513 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

PREP MODE

The host can put the drive into prep mode by sending a prep
command with 512 bytes of executable controller code. The
controller loads this code over the RAM-resident dispatcher whose
function is to interpret the command bytes sent to the
controller. Thus in effect, the prep block can be considered as
a specialized dispatcher. Some applications requiring direct
control of the hardware can utilize this feature (e.g., burn-in
program). The standard prep block shipped by Corvus supports the
following functions:

format the drive or tape

verify the drive (Rev B/H, OmniDrives only)
read from the firmware area

write to the firmware area

£fill the drive with a pattern (OmniDrive only)

reformat a track (Bank only)
destructive verify a track (Bank only)
non-destructive verify a track (Bank only)

All prep blocks should support a reset function in order to take
the drive out of prep mode and back to the normal mode. This is
done through a reset command (command code = 00h) in prep mode.
Also, when the controller is put in prep mode, the front panel
1ED's are set as a visual indication of this mode. For Rev B/H

Corvus Systems 50

Mass Storage Systems GTI Prep Mode Commands

drives, the FLT and RDY lights are turned off and the BSY light
is turned on. For OmniDrives and Banks, the opposite is true;
i.e., the FLT and RDY lights are turned on and the BSY light is
turned off.

Rev B/H drives can use only one prep block at a time (maximum 512
bytes of code). OmniDrives and Banks, however, use a maximum of
4 prep blocks (2K of code). The first prep command puts the
drive into prep mode. Any additional prep command blocks are
loaded after the previous block. After the fourth block has been
received, any additional block overlays the fourth block.

Prep blocks are hardware dependent. Prep blocks for Rev B/H
drives contain 280 code, whereas prep blocks for OmniDrives and
Banks contain 6801 code.

Command Name: Put drive in prep mode

Command Length: 514 bytes
Result Length: 1 byte

Command

- G D - G - - G GIh D I GED GED SIS GED EED GNP SES GED WES D G G} GAD VES GUR TN GUR WS GUR S TS EEY W WS NS AEE (Gn O M WIS GEN SN0 dNG AID WED GND e MM @US NN GWe Ge Mwe Sme

Offset/Len| Type | Description

- G D G G T G S G S G G S G G > G G W S G A G A W T U N 3 M W WM S Gm W GG SN GER W Y T S W SIS NN G GO e e = -

0/ 1 | BYTE | command code - 1l1lh

- D D G D G G S G G S G G G D T D G D GHN GE SE GER G S R A S SR ST W G S WY Ml AT VS VIR S WS M W6 MR SR el G SED M WD GED R WS S W @ @

2 / 512 | ARRY | prep block

- D D G G G G G G G G D SIS G G W S WS G G G SR D P wY HED SR G ACD GAS M GER S T S WA A I EED GEb MEe SR G REP e ShS ES N A G S G

Result

- - - G S G G S G G S S S D (W SR G G G TS S W M TES S S e A W TEE AR T AN M S W W W W . 4 e VR GUP G N D B Gan e

- D D D D G G NS G R GRS G GEN D G G WS TS R CED W e SN @ s W EA SEn SN WD TED N EEe A GUS ALG SR G e M MV W W G G - W e

Corvus Systems 51

Mass Storage Systems GTI Prep Mode Commands

Command Name: Reset drive (take drive out of prep mode)

Command Length: 1 bytes
Result Length: 1 byte

FORMAT DRIVE

In prep mode using the Corvus prep block, the host can send a
format command to the controller. The controller lays down on
the media the sector format, and the data fields are filled with
whatever is specified by the Format command. OmniDrives use the
pattern FFFFh.

A Format command destroys ALL information on the drive, includlng
the firmware itself. The spared track table, the virtual drive
table, and the pipes tables, as well as the polling parameters,
interleave factor, read after write flag, etc., are all destroyed
by Format. You would not normally format a drive until this
information is written down, so that it may be manually restored
after formatting.

For Rev B/H drives, the controller refuses the Format command if
the Format switch (beneath the front panel LED's, second from
right) is set to the left. You must set this switch to the right
in order to format the drive.

Drives shipped from Corvus have been formatted, burned-in, bad
tracks logged in the spare table, and the flrmware written. If
you must format the drive, you should always verify the drive
after formatting, and spare any bad tracks found. See the
section titled "Verify," later in this chapter, for more
information.

Corvus Systems 52

Mass Storage Systems GTI

Command Name: Format drive (Rev B/H drives ONLY)
(drive in prep mode)

Command Length:
Result Length:

Command

- G G G L I G N CEP WP KD IS S WS WD M NS WS S GRS GE S GUD GED GNP WED ER GMS W Mg G W I R N WS W SEE GWD GED GNP WD AN AR G G e S D G G N WD e

- G S D SR SIS WD AR Y ED (T W D D S G G G D GED G IR I GI WS NS SN G WD W G GED G R GE G AN W N G AMP MRS M B NS M G WS AR B GED GEM W GE Gme -

G D G G D D S S D D SN G R G GES G N B R SR T SR GER O S PER D B GRS RN WAL WER R GTE SEP AN GUN WNE NEV D MIE B Gh Bun W GES S GOV GED MM WS S

- T G S O D D U D D S WD SN G e IR SN IR ST ED WD NS GED G MEN S GUS GER S G GE G TED WD W GED G G G E GED G GES e SN GE P G S =

n bytes
1 byte

The Corvus diagnostic programs send 513 bytes and use pattern
76h or ES5h.

Command Name: Format drive (OmniDrives ONLY)
(drive in prep mode)

Command Length:
Result Length:

Command

Offset/Len| Type

- G N D I W T OIS W € WD (LD E END A D €MD NS G SIS AMD GBS TV GRS CEV WS Y0 GUD G WY GUD MU GNR MaR N RV BUP WD GNE GHP WER GND SR P W GED W SN M W S e

Result

Offset/Len| Type

Corvus Systens

1 byte
1 byte

| Description

Format Command

53

Mass Storage Systems GTI Format Command

Command Name: Fill the drive (OmniDrives ONLY)
(drive in prep mode)

Command Length: 3 bytes
Result Length: 1 byte
Command

Offset/Len| Type | Description

- — —— ———— — - T - - T G D D CED U W NS GID W SN W G GED GNP DY S R SR D D S S S G G D S S S e -

0/ 1 | BYTE | command code - 81h
1/ 2 | WORD | fill pattern
Result

Note: The recommended f£ill pattern is Bé6DS%h.

FORMAT TAPE (BANK)

In prep mode using the Corvus prep blocks, the host can send a
tape format command to The Bank. With this command, the host
specifies whether fast tracks are to be used, the tape type
(1LOOMB or 200MB), and the interleave factor to be used.

The interleave factor must be an odd number between 1 and 31.
The controller automatically increases by 1 any specified even
interleave. Any interleave greater than 31 is set to 31.

After receiving the format command (full tape format only), the
controller sends back a success status immediately to acknowledge
that the format command has been received. It then turns off
interrupts, thus taking The Bank offline. During this time, no
devices can communiate with The Bank. After formatting the
media, the controller fills the tape with a pattern (B6DSh). It
then attempts to verify the tape by reading all sectors. Any bad
sectors are spared automatically. The results of the format are
written to firmware block 2.

Any tracks reported as bad have more than 4 bad sectors, and
should not be used. If any bad tracks are reported, the tape
should either be discarded, or dummy volumes allocated over the
bad tracks. See the section titled "Physical Versus Logical
Addressing" later in this chapter for more information on mapping
track numbers to block addresses.

Corvus Systems 54

Mass Storage Systems GTI Format Commands

The prep block also allows the host to send a command to reformat
one track. The tape is assumed to have been formatted, so the
controller uses the current interleave and tape parameters. This
feature is provided in case one track has read-write problems and
needs to be reformatted.

The command to reformat one track returns the number of bad
sectors on the track. 1If the number of bad sectors is greater
than 4, the track is bad. You should use the Get Drive
Parameters command to check the tape life. Tapes are rated for
500 hours and 2000 start-stops. If either of these numbers is
exceeded, the tape should be discarded. Otherwise, you should
allocate a dummy volume over the bad track. See the section
titled "Physical Versus Logical Addressing" later in this chapter
for information on mapping track numbers to block addresses.

Command Name: Format tape (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes

Result Length: 1 byte

Command

Offset/Len| Type | Description

R G WD IS BRD KD TV SRV MO0 B D M SN Gt IS D VIS WIS N GBS G WER GRS GV M e G S G W WS WM COW e 6 W WM G GOY O S ST A TR SIS WM e D NS GED GED GHN SNV W WIS @B W W

0/ i | BYTE | command code -~ 0lh
"y ,1 (Y| o0m
"2 /3 | ARRY | unused - use o's
"5, 1 | FLAG | fast track flag (0lh = fast tracks on)
"6 /1 | BYIE | tape size (0lh = 200MB; 00h = 100MB)
"7 /1 | BYTE | interleave factor (odd number 1 to 31)
Result

0 /7 A | BYTE | result

VAP 233 REP AMS D s 3% B S D UER WD W GED GNM MY SR GND CHN S GEY WY R GNP WD G MRS N W WA GHR GEN G S R MER GUR GG A YRS MR MED GER GA LN D GND GRS GUP GAS W IV WS S D G G

An even interleave factor is automatically increased by 1.
Interleave greater than 31 is set to 31.

The resuits are recorded in firmware block 2 in the following
format:

Corvis Systems 55

Mass Storage Systems GTI Format Commands

Command Name: Reformat one track (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes
Result Length: 2 bytes
Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code = 0Olh

l1/1 | BYTE | 02h

2 / 2 | FWRD | track number to format

4 / 3 | ARRY | unused - use 0's
Result

Track number range is 0-100. The firmware track (track 1)
contains sparing information for the whole tape; if this track
is reformatted, the sparing information for the rest of the tape
will be lost.

MEDIA VERIFY (CRC)

The verify command is a prep mode command. For Rev B/H drives,
the verify is performed as follows: The controller reads each
sector on the disk. If it is unable to read a particular sector,
it tries again to read the sector. If it can read the sector
within 10 retries, it reports a soft error. If it cannot read

Corvus Systems 56

Mass Storage Systems GTI Verify Command

the sector, it rewrites the sector with the data it read, which
is probably bad, and reports a bad sector.

For OmniDrives, each sector is read only once, and a hard error
is reported if the sector is bad. The sector is not rewritten.

Marginal sectors may be reported on one execution of the Verify
command, yet not show up on the next. Any sector which is ever
reported as bad should be spared. Each media has a maximum
number of tracks that may be spared. If the Verify command

reports more than this number, the media is bad, and should not
be used.

A list of spared tracks should be maintained on paper near the
drive. Then if it is ever necessary to reformat the drive or
rewrite the entire firmware area, the appropriate tracks can be
respared.

A list of bad sectors is returned to the host. The sector
numbers are physical sector numbers, and are converted to track
numbers with the following algorithm:

track # = [(cylinder #) * (number of heads)] + (head #)

Note that those sectors which are already spared may be reported
as bad.

For The Bank, the prep block provides two verify features: a
non-destructive verify and a destructive verify. These commands
work on one track at a time. The non-destructive track verify
reads all the sectors on the specified track and reports the
number of bad sectors found and the sector numbers of the first
four bad sectors. The destructive verify fills the track with
the input pattern (2 bytes) first and then verifies the track as
described for non-destructive verify.

See the section titled "Physical Versus Logical Addressing" later

in this chapter for information on mapping track numbers to block
addresses.

corvus Systems 57

Mass Stocrage Systems GTI Verify Command
Command Name: Verify drive (OmniDrive, Rev B/H ONLY)
(Drive in prep mode)

Command Length: 1 byte
Result Length: 2+4*n bytes

Command

Offset/Len| Type | Description

o/ 1 | BYTE | result
"1/ 1 | BYTE | number of bad sectors
"2/ 4 | ARRY | head, cylinder, sector of 1st bad sector
6,4 | ARRY | head, cylinder, sector of 2nd bad sector

0/ 1 | BYTE | head number
1/ 2 | FWRD | cylinder number
3 /1 | BYTE | sector number

Corvus Systens 58

Mass Storage Systems GTI Verify Command

Command Name: Non-destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
Result Length: 10 bytes
Command

- - D S I G D S D D G SN S W GE GRS WD SR SUN AW S WS TE WS U G VER S D T SEN MR G WD W MLE G WED S R W G W

0/ 1 | BYTE | command code =~ 07h

1 /1 | BYTE | 02h

2/ 2 | FWRD | track number

4 / 2 | ARRY | unused - use 0O's
Result

- D D G G D D - G D S D G G CED EEL I e G G G P P SIS W TS S U AR WS CAD WD UTH WS SN W TR R A DGR U NS WP SIS GED GEN GEO AL G G Sme M s

- W D WD G D D D G D G G D T D G I G G G GE GHE R G WA s TR SN R TR AT GNR Y I WIS SN G W W S R G G WS B G G G S = -

o/ 1 | BYTE | result

1 /1 | BYTE | number of bad sectors

2/ 2 | WORD | sector number of 1st bad sector
8 / 2 | WORD | sector number of 4th bad sector

The sector number is interpreted as msb = head number and 1lsb
= sector number. Since there are 256 sectors per section, this
value is also an absolute sector number.

Corvus Systems 59

Mass Storage Systems GTI Verify Command

Command Name: Destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
Result Length: 10 bytes
Command

0/ 1 | BYTE | command code - 07h

i1 /1 | BYTE | Olh

2 / 2 | FWRD | track number

4 / 2 | WORD | fill pattern
Result

0/ 1 | BYTE | result

1 /1 | BYTE | number of bad sectors

2/ 2 | WORD | sector number of 1lst bad sector
8 / 2 | WORD | sector number of 4th bad sector

The recommended fill pattern is B6D9%h.

TRACK SPARING

When the drive is formatted, it is filled with a pattern. A
burn-in can then be performed to find the marginal tracks. These
can be recorded in the firmware track sparing block to make them
invisible.

Each type of mechanism has a different number of spared tracks
allowed. This number is returned by the Get Drive Parameters
command to let the host know the maximum number of tracks it can
spare out. Rev B drives allow 7 spared tracks; Rev H drives
allow 31 spared tracks; OmniDrives allow from 7 to 64 spared
tracks, depending on the drive type (see Appendix A).

Internally, the spared tracks are recorded in the firmware area;
see Appendix A for a complete description of the spared track

Corvus Systems 60

Mass Storage Systems Track Sparing

table. You should also maintain a list of the spared tracks on a
piece of paper near the drive, so that if the firmware is ever
overwritten you can respare the proper tracks.

Tracks are spared by updating the firmware blocks containing the
spared track table. The Corvus Diagnostic program provides this
capability.

For Banks, when a tape is formatted, it is also verified and all
the bad sectors are logged in the firmware area. Each track has
four sectors reserved for use as spared tracks.

Since only four sectors are reserved, any track with five or more
bad sectors should not be used. The firmware has no capability
to skip these tracks. Therefore it is recommended that the tape
be discarded or dummy volumes be located over this track. A
dummy Constellation volume can be allocated to this track to skip
it. See the next section for information on converting sector
numbers to block numbers.

PHYSICAL VERSUS LOGICAL ADDRESSING

The physical layout of each media is shown below.

Rev B/H OmniDrives Bank
Firmware tracks 0 - (m-1) tracks 0 - 3 track 1
User area tracks m - n tracks 4 - n tracks 2 - 2z
Unused tracks n+l - z tracks n+l - 2z
where m = (# of heads/drive) * 2 (see Appendix A)
z = total number of tracks - 1
X = maximum number of spared tracks allowed

n = 2z - x + number of tracks currently spared

The unused area is used up as tracks are spared.
Track 0 on The Bank is reserved for a landing area.

For Rev B/H drives and OmniDrives, the drive is viewed as a
series of consecutive physical tracks, where a track is
identified by a head number and a cylinder number (head number
varies fastest). Logical tracks are mapped onto the physical
tracks one-to-one, skipping over spared tracks and the firmware
area. A typical layout of a hypothetical drive is shown below.
This example assumes a 4 track firmware area, 120 tracks total,
with 16 maximum spared tracks allowed. The drive has 4 heads and
20 sectors per track. Two tracks, tracks 34 and 67, are spared:

Corvus Systems 61

Mass Storage Systems GTI Physical Versus Logical Addressing

Physical Head,Cyl Logical
tom—— e —————— + tm—m——— e ———— +
A | track 0 | 0,0 | firmware area |
firmware area = = = =
v | track 3 | 3,0 | |
e DL T + tommmr e +
A | track 4 | 0,1 | track O |
| tome e ——————— + tom—m e m e ———— +
| | track 5 | 1,1 | track 1 |
| +track 33 | 1,8 | track 29 |
e e e e + tem—r— e ———— +
user | track 34 | 2,8 | spared track |
area o ——— + tem——— e ——— +
| track 35 | 3,8 | track 30 |
tomm— e + tommrmr - +
I | I I
L T L L + trmmcm e ——— +
| track 67 | 3,16 | spared track |
| e L LT + e ———————————— +
| - = = =
v | track 103 | 3,25 | track 97 |
tomm—— e + tomm— - +
A | track 104 | 0,26 | track 98 |
reserved R it + tommmcnee e ————— +
for spared | track 105 | 1,26 | track 99 |
tracks = = o ——— +
v | track 119 | 3,29 = unused =
e e LT + e e T +

When a track is spared, the user data following the spared track
is still there, but is no longer accessible, since the data is
now located at a different logical address.

The algorithm for converting block numbers to physical sector
numbers would be as shown below, if it were not for the firmware
area and spared tracks. The real algorithm is explained
immediately following the simplified form.

sector # = (block #) modulo (sectors per track)

track # = (block #) div (sectors per track)
head # = (track #) modulo (number of heads)
cylinder # = (track #) div (number of heads)

Note that the track number is a temporary result and is not a
directly addressable entity in the drive; a given block is
addressed physically by sector number, head number and cylinder
number.

The real algorithm for converting block numbers to physical
sector numbers is shown below:

Corvus Systems 62

Mass Storage Systems GTI Physical Versus Logical Addressing

sector # = (block #) modulo (sectors per track)

logical track # = (block #) div (sectors per track)

physical' track # = (logical track #) plus (firmware
area offset)

physical track # = (physical' track #) plus (one for
every spared track preceding).

head # = (physical track #) modulo (number of heads)

cylinder # = (physical track #) div (number of heads)

Continuing with the example given above, let's convert block
number 1308 to a physical sector address.

sector # = 1308 mod 20 = 8

logical track # = 1308 div 20 = 65

physical' track # =65 + 4 = 69
Tracks 34 and 67 are spared, so add 2

physical track # = 69 + 2 = 71

head # = 71 mod 4 = 1

cylinder # = 71 div 4 = 17

Alternatively, suppose you have run the Verify Drive command, and
it reported a bad track at head 2, cylinder 12, sector 10. You
want to compute the range of blocks that the bad sector lies
within. You must apply the above algorithm in reverse:

physical track # = 2 + (12%*4) = 50
Track 34 is already spared, so subtract 1
physical track #'= 50 - 1 = 49
logical track # = 49 - 4 = 45
starting sector # = 45 * 20 = 900
ending sector # = 900 + 20 - 1 = 919

Thus, the bad sector lies somewhere between sector 900 and sector
919. You must apply the interleave factor (see next section) to
determine exactly which sector is bad.

For Banks, the tape is viewed as a series of tracks numbered 0 to
100. Each track consists of a number of sections; a 200MB tape
has 8 sections per track, while a 100MB tape has 4 sections per
track. Each section contains 256 sectors, and a sector contains
1024 bytes. On a Bank tape, each track has four sectors reserved
for sparing, so a given block number always falls within the same
track. The track number of the track in which a given block is
located is computed as follows:

sector # = (block #) div 2
logical track # = (sector #) div (sectors per track)
physical track # = logical track # + 2

To compute which blocks lie within a given track, use the
following algorithm:

Corvus Systems 63

Mass Storage Systems GTI Physical Versus Logical Addressing

blocks per track
starting block #
ending block #

(sectors per track - 4) * 2
(track # = 2) * (blocks per track)
(starting block #) + (blocks per track) - 1

Thus, if track 17 is reported as bad (more that 4 bad sectors)
by the Track Verify command, you compute the bad blocks as
follows (assuming a 200MB tape):

blocks per track = (2048 - 4) * 2 = 4090
starting block # = (17-2) * 4090 = 81350
ending block # = 81350 + 4090 - 1 = 85439

In order to "spare" the track, you should allocate an unused
volume starting at block 81350 that is 4090 blocks in length.

INTERLEAVE

Interleaving provides-& way of improving disk performance on
reading sequential sectors. The interleave factor specifies the
distance between logical sectors within a given track. For
example, if we assume 20 sectors per track, an interleave factor
of 1 specifies that the sectors are numbered logically 1 to 20.
An interleave factor of 2 specifies that the sectors are numbered
1, 11, 2, 12, ..., 10, 20. An interleave factor of 5 specifies
that the sectors are numbered 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,
3 .

As you can see, the interleave factor specifies how far apart
sequential sectors are located. If the interleave factor is
optimal, a sequential read operation is able to read more than
one sector per disk revolution. Note that different interleave
factors are optimal for different applications. You will have to
decide if changing the. interleave factor will significantly
enhance the speed of one application without penalizing other
users of the drive.

The interleave is specified in the drive information block of the
firmware area. When the firmware is first updated, it uses the
standard interleave specified in the firmware file. Legal values
are given below:

min max default
Rev B/H 1 19 9
OmnibDrive 1 17 9
Bank 1l 31 11

Interleave for The Bank must be odd.
If the media has information recorded, a change of interleave

effectively scrambles the information. Changing the interleave
back to the old value restores all information. When the

Corvus Systens 64

Mass Storage Systems GTI Interleave

interleave is changed, the sparing information is preserved since
it is physical track information. Also, the firmware blocks are
not interleaved.

The interleave is changed by updating the firmware block
containing it. This capability is provided in the Corvus
Diagnostic program.

READ-WRITE FIRMWARE AREA

Each mass storage device has a designated firmware area which is
not accessible to normal read-write commands, and is not counted
in reporting the usable blocks on the drive. To access this
area, the host must put the drive in prep mode and send firmware
read-write commands. There is no interleaving performed on the
firmware area, nor may this area have any bad sectors.

For Rev B/H drives, the firmware file currently consists of 40
blocks. (Some old firmware files were 60 blocks.) The firmware
file occupies the first 2 tracks of cylinder 0; a duplicate
firmware file is located in the first 2 tracks of cylinder 1.
The remaining tracks of the first 2 cylinders are unused. The
user area starts at cylinder 2.

The read-write firmware commands require a head and sector as the
address, rather than a block number. The head-sector number is a
byte field: the head number occupies the upper 3 bits of the
byte, and the sector number occupies the lower 5 bits. Firmware
blocks 0-19 are head 0, sectors 0-19, and blocks 20-39 are head
1, sectors 0-19. For example, firwmare block 16 is addressed as
10h, and firmware block 32 is addressed as 2Ch.

For OmniDrives, the firmware file consists of 36 blocks, thus
occupying two entire tracks. A total of four tracks are reserved
on the medii so that a duplicate copy of the firmware can be
maintained. The user area starts at track 4.

The firmware blocks are numbered from 0 to 35. The read-write
firmware commands require a block number as the address. Note
that this is different from the Rev B/H drives where a physical
head and sector are specified instead.

For The Bank, track 1 of the tape nas the first 38 sectors
designated as the firmware area; only the first 512 bytes of each
physical sector are used. The first three sectors contain
identical information and are called the boot blocks (triple
redundancy for safety). The firmware blocks are numbered 0 to
35, and a block number is used as the address for the firmware
read-write commands.

Corvus Systems 65

Mass Storage Systems GTI Read-Write Firmware

Command Name: Read a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 2 bytes

Result Length: 513 bytes

Command

Offset/Len| Type | Description T
T /1 U BvrE | command code - 3zn
"1/ 1 1 TBYIE | head (bits 7-5), sector (bits 4-0)
Result

Command Name: Write a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

Command
Offset/Len| Type | Description

Corvus Systens 66

Mass Storage Systems GTI Read-Write Firmware
Command Name: Read a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 2 bytes
Result Length: 513 bytes

Command

D S W P D D G S G G G G G G G D SIS G R Ghe GE S D AN SN G DEY G v Gl GNP WV MR SNM B S TR ST T MR G GBS GGD SN GER e AN G G A W SLN EED i wOR W

S D S S GE GED SR G SIS G G G G S I D IR S G S NS GE Gms wme S G D GHe GE TS NS GED SuS S NAA W NSS N WD W e A TED R SR SR M i Mo v S G M e .

0/ 1 | BYTE | command code - 32h
1 /1 | BYTE | block number
Result

D D D - D - D D G - - . SR R I S G Gy G S N VL WS W G D M S GwS S G A S W G G D GER GNP GER A AN W S SN W SIS N
- G G SIS D G B AL GEL IS IR G G R G G S A G MR W W WY RS S5 G D T N G5 GG GES Gh O 4T U A MR MY SR A WD MR A FEn G G e e —
G - - D G S IS G D G S G W G G D T G S NG WD G I WD A G S Y D G G N D G G GWE W S G G ENS D G G G - —— -

Command Name: Write a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

Command

——
——

———

O - - - - D GRS N D G S D G M WD GIL VAR VS @ WD SR G WS S TA GED GRS W GG WS GES AN MW RS AND S I GNS VRS N SER AN G GED GO Wb W GNE WO GRe DI Gm B W

- IR GTR S GES G D G v SN G D GEe FER S A GTE G U RN G T SRS 14N GNP YD S CRS WED KR SV NBL NET VN W W SR W We M AP R S AN GNP SU NS G GGe WV SR SER SRS SN e S
D D - D G SIS SR S S W M G D W G A WS (R SR TR D N CHD I GAR G GRS W | b I D M W GRS SR S SMS WS U SN TN IR M G G MED GER S G B VD S S GWS W

D et e T R L kL ——

Corvus Systens 67

Mass Storage Systems GTI Virtual Drive Table

VIRTUAL DRIVE TABLE (REV B/H DRIVES)

The Virtual Drive Table was implemented to avoid rewriting
drivers which had a 16MB addressing limitation.

The controller maintains a table of virtual drives in the
firmware area. This 14 byte table provides for the definition of
up to 7 virtual (logical) drives per physical drive. The format
for the virtual drive table is shown below:

| track offset (1lsb) |
+- of 1lst virtual -+
| drive (msb) |

| track offset (1lsb)|
+- of 2nd virtual -+

| drive (msb) |
B +
| . I
+= . -+
| . I
tmmmm e c e +

| track offset (1sb)|
+- of 7th virtual -+
| drive (msb) |

An entry with a track offset equal to FFFFh indicates the absence
of the corresponding virtual drive.

The track offset is a logical track number, and is simply
multiplied by the number of sectors per track to obtain a block
offset. When a drive number is specified in a Read-Write
command, the controller examines its virtual drive table. 1If an
entry exists for that drive, the track offset is multlplled by 20
(the number of sectors per track), and the result is added to the
address.

For instance, on a 20MB Rev B drive, which has a user capacity of
38460 blocks, the Constellation I Apple software creates a
virtual drive table with 0 as the entry for the first drive, and
947 as the entry for the second drive. Virtual drive 1 consists
of blocks 0 to 18939, and virtual drive 2 consists of blocks
18940 (20%947) to 38459.

The controller does not check whether an address exceeds the
capacity of a virtual drive. I.e., if virtual drive 2 starts at
track 100 (address 2000 on a Rev B/H drive), then block 2010 can
be addressed as drive 1, block 2010, or as drive 2, block 10.
This allows hosts that do not need the artificial disk division
to share the same disk with those that do.

Corvus Systems 68

Mass Storage Systems GTI Virtual Drive Table

The Virtual Drive Table is updated by editing the firmware block
containing it. The Corvus Diagnostic program provides this
capability.

The settings used by Corvus for Apple II Constellation I systems
are listed below:

Total Drive 2 Drive 1 Drive 2

Drive blocks offset blocks blocks
Rev B 20MB 38460

DOS only 976 19520 18940

Pascal/Basics 947 18940 19520
Rev H 20MB 35960

DOS only 911 18220 17640

Pascal/Basics 896 17920 17940

CONSTELLATION PARAMETERS

The Constellation parameters are used when a Rev B/H drive is
connected to a master MUX, and the MUX switch (second from left
under the front panel LED's) is set to the right. The parameters
specify what kind of host is connected to each slot in the MUX; a
host cannot communicate with the drive if this table is not set

up properly. Note that the table must be set up BEFORE the MUX
is installed.

The format of the table is shown below:

trm——e e ——c——— +

|value for slot 1| byte 0O
e +

|value for slot 2|
- ——— +

I |

l I
e e ———— +

|value for slot 8| byte 7
e —————— +

| poll param 1 | byte 8
o e e e e

| poll param 2 | byte 9
tmm—— e ————— +

| pell param 3 | byte 10
e +

| poll param 4 | byte 11
o ————— +

Corvus Systens 69

Mass Storage Systems GTI Constellation Paramters

The slots on the MUX are numbered as shown below:

® o U
W

X
where the flat cable connects at X.

valid slot values are shown below:

Values Meaning
0 Nothing
1 MUX
2 LSI-11
128 Computer

Each slot value is set to 1 (MUX) by default. It is possible to
have a computer connected to a slot with a value of 1; and it is
possible to have a MUX connected to a slot with a value of 128;
however, this is not recommended because performance of the
network suffers.

The meaning of each polling parameter is given below:

poll param 1l: Time scale factor for timing out on a
host. This is the total time the MUX
will stay at one slot, regardless of the
number of transactions completed. This
prevents a user from hogging the network.

poll param 2: Time scale factor for timing out on a
potential host. This determines how
long the multiplexer waits for the first
request at a particular slot.

poll param 3: The maximum number of transactions that
will be accepted from a host before the
multiplexer switches to the next slot.

poll param 4: unused

The default values for the polling parameters are:

poll param 1: 180

poll param 2: 16
poll param 3: 32
poll param 4: 0

Corvus Systems 70

Mass Storage Systems GTI Constellation Paramters

The Constellation parameters are updated by editing the firmware

block containing them. The Corvus Diagnostic program provides
this capability.

Corvus Systems 71

Mass Storage Systems GTI

This page intentionally left blank.

Corvus Systems

Constellation Paramters

72

Mass Storage Systems GTI Omninet Protocols

|
OMNINET |
PROTOCOLS | 2
|
|

This chapter describes the Omninet functions of the

OmniDrive mass storage system, The Bank mass storage system, and
the disk server for Rev B/H drives. It describes how disk
commands are sent over an Omninet local area network.

A brief review of the Omninet Local Area Network General
Technical Information Manual, chapter 3, will help you

understand the material presented here. In that manual, the
Omninet command vectors used to send and receive messages are
described. The two commands that are relevant to this discussion
are repeated below:

Corvus Systens 73

Mass Storaye Systems GTI

Send Message
Command vector

Omninet Protocols

0/ 1 | BYTE | Command code = 40h
T3 T hDRs | Result record address
T 1 1 Bvte | pestination socket
T3 aoRs | pata address
T8 /2 | woro | pata lemgtn
Tl ;1 | BttE | User comtrol lemgth
11,1 1 Bvee | pestination mest

0/ 1 | BYTE | Return code - values are:
| | 00-7Fh - message sent successfully
| | 80h - message not acknowledged
| | 81lh - message too long
| | 82h - message sent to unitialized socket
| I 83h - control length mismatch
| [84h - invalid socket number
| | 85h - invalid destination address
1/ 3 | BYTE | Unused
4 / n | ARRY | User control information

Corvus Systems

74

Mass Storage Systems GTI Omninet Protocols

Setup Receive Message
Command vector

- - S G - D - R G G - P R D S G D S I W S G W R R S SA¢ wn W B f G G S NS WS P SN W W W M e W8 e

0o/ 1 | BYTE | Command code = FOh
"1/ 3 | ADR3 | Result record address
"4/ 1 | BYIE | Socket mumper
"5/ 3 | ADR3 | Data address
"8,/ 2 | WORD | Data lemgth
10/ 1 | BYTE | User control lemgeh

T S D D G . S G G G G D R - D - G D L W G - N . . s M AN W S N e s . G Suh b Smm >

- - D D S D G G SV I I D G G D I (MR GER GED MM SIS S D MR GER G W TR NS T MR GEN MM USRS U e G Gu e -

- - D G D I D S G G SRS GED GNP GED G W CID GED GED G GED GAS (N GED GED G GID GHD GED GHS NS GEP WR IR SFD GMD S WM SIS SRR WP OB G AP YR GEP SHS W MR GUS NS SV S D e

0/ 1 | BYTE | Return code - values are:
| | FFh - initial value (set by user)
| | FEh - socket set up succesfully
| | 84h - invalid socket number
| | 85h - socket already set up
| | 0Oh - message received
1/71 | BYTE | Source host
2 / 2 | WORD | Data length
4 / n | ARRY | User control information

Ll R e Ll L Y Y i ——

Any message exchange on Omninet consists of setting up a receive
socket with a Setup Receive command, sending the message with a
Send command, and waiting for the reply to be received. You
always need at least 4 buffers for this task:

l) a command vector

2) a data buffer

3) a result record for the Setup Receive message,
4) a result record for the Send message.

You can use two separate command vectors: one for Setup Receive
and one for Send, but you don't have to. You can also use
separate data buffers. You MUST use separate result records.

The disk servers on Omninet currently provide two functions: the

execution of disk commands, and a name service. In the future,
they and other servers, developed by Corvus or other software

Corvus Systenms 75

Mass Storage Systems GTI Omninet Protocols

developers, will provide many more services. 1In order for a
server to distinguish which service is being requested, Corvus
has defined a message format which includes a protocol identifier
(protocol ID) as the first 2 bytes of each message. This
protocol ID identifies what type of service is being requested or
provided. For more information on protocol IDs, refer to the
Omninet Protocol Book.

CONSTELLATION DISK S8ERVER PROTOCOLS

The Disk Server Protocol is used to exchange commands and data
between Corvus disk devices on Omninet and the host computers
which they support. The disk commands were defined in Chapter 1.
The Disk Server Protocol defines the format of Omninet messages
which contain disk commands, data, and control information. It
also describes the mechanism for exchanging those messages. 1In
general, the Disk Server Protocol is a two way conversation
between a client and a server. The server is usually a Corvus
disk device and the client is usually a personal computer. It is
possible for a personal computer to run a program which enables
it to act as a Corvus disk device. Corvus OmniShare for the
IBM-PC, and Corvus DisketteShare for the Apple II, are two
examples of such a program.

The Disk Server Protocol is a transaction based protocol; in
other words, for each message sent, a reply is expected. There
are two basic types of transactions: short commands and long
commands. Short commands (4 bytes or less) involve the exchange
of two messages, while long commands require four messages to
complete a transaction. A disk read is a short command and a
disk write is a long command.

The general message exchange for data transfer is shown in Figure
2.1. For a short command, the Disk Request message contains the
first four or fewer bytes of the command, and the Results message
contains the results of the command. For a long command, the
Disk Request message contains the first four bytes of the
command. After sending the Disk Request message, the host waits
for a Go message from the server. After receiving the Go
message, the host sends the remaining bytes of the command with a
Last message. The server finally sends the results of the
command with the Results message.

Corvus Systems 76

Mass Storage Systems GTI Omninet Protocols

Short command Long command
Client Server Client Server
Disk Request Disk Request
O rr e c e e e ————————————— > O~ ————————————————— >
Results Go
e e s e, —— e ——————— o - e ————— o
Last
O ———————— . ———— >
Results
e ————————— ——————————— o

Figure 2.1: Message exchange for Disk Server Protocol

There are two versions of Disk Server Protocol: old and new.
These are described in detail in the sections "0ld Disk Server
Protocol," and "New Disk Server Protocol." The new protocol
follows the protocol guidelines established in the Omninet
Protocol Book, supports more operations than the old, and uses
different sockets. The operations supported are listed below:

old new originator

Disk request (send disk command) X X client
Last (remainder of disk command) X X client
Abort request X client
Go X X server
Results (of disk command) x X server
Cancel request X server
Restart request b4 server

An example is probably in order. Let's look at the process of
sending both a short and long command. This example uses the 0ld
Disk Server protocol. You may wish to refer ahead to the section
"0ld Constellation Disk Server Protocol" for further explanation
of the message contents.

S8ending A short Command

This section contains an example of sending a short command.

We will use the Read a Sector (512-byte sector) command to read
sector 0 from drive 1 on server 1. Recall that this command is 4
bytes long: command code is 32h, and the sector address is 01h,
OOh, OOh.

Corvus Systems 77

Mass Storage Systems GTI

Omninev Protocols

First, we must issue a Setup Receive command to the transporter.
The flelds marked with - will contain the indicated data upon

receipt of the Results message.

Command vector

e ——— e e ——— + +
jcommand code = Foh | |
tmmm e ————— + |
| result | ==t
+- -+
| record |
+=- -+
| address I
tmm—mr e — e —————— +
| socket number = BOh |
o ———— +
| user | ===+
+= -+ [
| data | |
+=- -+ |
| address | |
L T L L + |
| user data 02h | |
+= -+ +
| length 512 ooh |
ettt L L L Lt +
|control len = 03h |
tmmm e e — e ———— +

Corvus Systems

Receive Result Record

------ Stmmmmm e m e ——————t
| return code = FFh |
tommm e ——————— +
| - (source address) |
tommr e ———— +
| = (user data |
+= -+
| = 1length) |
- e e o o e o e o e tm-
| = (user control |
+=- -+
| = information) |
+= -+
| |
tmmm e ———— +
User data buffer
------ Stmmmmc e —————————t
| = (512 bytes of |
+- -+
| - data) |
| - I
tomr e ——— -t

78

Mass Storage Systems GTI Omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Disk Request message.

Command vector Send Result Record
e e e + tmm———— Stmmc e c e e, —————— +
| command code = 40h | : | return code = FFh |
tom e —————— + | trm—————————————————— +
| result |t | unused |
+=- -+ + - -+
| record | | |
+= -+ +- -+
| address | | |
D e + e e e T L L +-=
| socket number = BOh | | send length 00h |
o ————— + + - -+
| user | ===+ | length = 4 04h |
+=- -+ | tomm e — e — e +
| data | | | receive 02h |
+ = -+ | + - -+
| address | | | length = 512 ooh |
o e e e s e e + | trm—— e ———————— +
| user data ooh | i
+= -+ |
| length = 4 04h | ! User data buffer
e et L L T Lt + o e D Lt ettt +
|control len = 04h | | read 32h |
o e e e + +- -+
|destination = 01lh | | command 0lh |
T + += -+
| 0o0h |
+- -+
l 00h |
trm e —————————————— +

Corvus Systens 79

Mass Storage Systems GTI Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record

e e L L +
| return code = 00h |
e Rttt L +
| source addr = O0l1lh |
‘o ——— +
| user data 0o2h |
+= -+
| length = 512 00h |

——t e —————————————— -
| length of 02h |
+= -+
| response=513 0lh |
L L e L LT +
| disk rslt 00h |
e +

Sending A Long Command

This section contains an example of a long command. We will use

the Write a Sector (512-byte sector) to write sector 0 to drive 1
on server 1. Recall that this command is 516 bytes long: command
code is 33h, and the sector address is 0lh, O00Oh, 00h, followed by
512 bytes of data.

Corvus Systems 80

Mass Storage Systems GTI Omninet Protocols

First, we must set up a socket to recevie the Go message. The
fields marked with - will contain the indicated data upon receipt
of the Go message.

Command vector Receive Result Record
e + Fm———— Shmmmmrcm—— e ———— +
|command code = FOh | | | return code = FFh |
trm e ——— + | tom—————————————————— +
| result | ===+ | - (source address) |
+- -+ e e +
| record | | - (user data |
+- -+ + - -+
| address | | = 1length) |
e e e e e + trr— e —————————————— +
| socket number = BOh |
o e e e e e +
| user | ==t
+ - -+ [User data buffer
| data | Fmm—— Stmmmmm e e +
- -+ | = (2 bytes of data) |
| address | += -+
torm— e ——————— + | - |
| user data oo0h | = =
- -+ | l
| length = 2 02h | e bbb bt D +
to————— - ————
|control len = ooh |
o e o e e e e e +

Corvug Systems 81

Mass Storage Systems GTI Omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Disk Request message.

Command vector Send Result Record
tom—e e —————— + tm————— P et L L L L L L LT e +
| command code = 40h | | | return code = FFh |
e —————— + | e ————— +
| result | ===+ | unused |
+=- -+ += -+
| record | | |
+= -+ += -+
| address | | |
e L P L EE L P L LT + - t=-
| socket number = BOh | | send 02h |
e S L L L + += -+
| user | ===+ | length = 516 02h |
+= -+ I e — e +
| data | | | receive o0h |
+=- -+ | +=- -+
| address | | | length = 0 ooh |
O DL L L e e + | e et T +
| user data oo0h | |
+- -+ |
| length = 4 04h | | User data buffer
e e L L L b + tm————— St ——————— +
|control len = 04h | | 1st four 33h |
L L e + += -+
|destination = 0lh | | bytes of 0lh |
e Y e e DL L + + - -+
| write 00h |
+- -+
| command 00Oh |
tmmm— e +

Corvus Systems 82

Mass Storage Systems GTI

Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.

If there are no errors, the Receive
Data Buffer will look like this:

Corvus Systems

Result Record and the User

Receive Result Record

et e T T +
| return code = 00h |
Frm e —————————— +
| source addr = O01h |
Fmm————— e ——— +
| user data 00h |
+ = -+
| length = 2 02h |
e, ——— e ——————— +

T +
| 'G* 47h |
+- -+
| 1o 4Fh |
| l
*n.v“--.uv Re— e e e G - - +

83

Mass Storage Systems GTI

Oomninet Protocols

After the Go message has been recevied, we are ready to send the
Last message, but first we must set up to receive the Results

message.

There will be no user data received, since the Write

command returns only a disk return code, but we will specify a

data buffer anyway.

Command vector

tmmmm e e ———— + +
| command code = FOh | |
ettt L L L L DL Dbl bty + |
| result | ===+
+=- -+
| record |
+=- -+
| address |
tmmmm e r e ————— +
| socket number = BOh |
tmmmm e m e e ————— +
| user | ===+
+= -+ |
| data | |
+- -+ |
| address | |
tomme e ——— - + |
| user data 02h | |
+= -+ +
| length = 512 00h |
tommmmr e ————— +
|control len = 03h |
e mmm - +

Corvus Systems

Receive Result Record

------ St e c e ——————t
| return code = FFh |
tom— e ——————— +
| = (source address) |
tmm—— e ———— +
| - (user data |
+- -+
| = 1length) |

- e e o R

| = (user control |
+= -+
| = 4information) |
+- -+
| |
tom—— e - +
User data buffer

------ Stmmmmc e e ———————t
I I
+= -+
I I
I I
tm—m—— e — - +

84

Mass Storage Systems GTI

Omninet Protocols

When the return code field in the Receive Result Record changes

to FEh, the socket has been successfully set up.

proceed to send the Last message.
AOh.

Command vector

We can now
Note that the socket number is

Send Result Record

trmm e ————— + fo————— Stemmmm e ————— +
| command code = 40h | ! | return code = FFh |
o~ + i tom e ————— +
| result | ==+ | unused |
+= -+ +- -+
| record | | |
+= -+ +- -+
| address | | |
tom—r e ————— + Frm e, — e +
| socket number = AOh |

tommr e ———————— +

| user | -+

+=- -t ! User data buffer

| data | e el D it +
+=- -+ | 512 bytes of data |
| address | += -
e L L D + | to be written |
| user data 02h | = =
+ - -+ | |
| length = 512 00h | P m e e ———— +
tmm—r e —————— ——

jcontrol len = oo0h |

e e ettt +

|destination = 0lh |

e ———— +

Corvus Systens

85

Mass Storage Systems GTI Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record

Tt L et bt +
| return code = 00h |
tmmmm e ———— +
| source addr = O01lh |
ettt +
| user data ooh |
+= -+
| length = 0 00h |
- o o e o e e e e o R
| length of 00h |
+= -+
| response=1 0lh |
e e L L L PP e +
| disk rslt 00h |
e +

For the example above, the sequence of message exchange using the
new protocol would be exactly the same; only the contents of the
User Control and the User Data buffers and the socket usage would
differ.

As you can see from the above example, the disk server protocol
uses the transporter's message splitting feature. The disk
server protocol always knows what packet is expected next, so it
can specify the user's buffer when it sets up a receive. The
control information always goes to a separate data area managed
by the driver. This feature cuts down on the amount of data
movement that must take place, by putting the command results
directly into the user's buffer.

The concept of short and long commands is used because of limited
buffer space in the disk server. The disk server is capable of
queuing one request for each network device. When it is ready
for the Last portion of the disk command, it sends the Go

Corvus Systems 86

Mass Storage Systems GTI ' Omninet Protocols

message. The disk server emulates the Constellation multiplexer
in that once the server services a particular host, it accepts up
to 32 commands before going on to the next host. See Chapter 3
for more information on disk server service times.

The OmniDrive and Bank controllers support both the old and the
new protocols, while the disk server for Rev B/H drives supports
only the old protocol. All the hosts on the network are treated
separately, i.e. the OmniDrive and Bank can support one protocol
for one host and a different protocol for another host. The
protocol to be used is derived from the type of Omninet message

format received by the controller. It will be used for only that
command.

OLD DISK SERVER PROTOCOL

(The 0ld Disk Server Protocol was written before the idea of
protocol IDs was finalized; therefore it does not abide by the
current protocol guidelines.)

Corvus Systems 87

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Disk request Protocol ID: =
User Control Length: 4 Message Type: -
User Data Length: 4 or less Socket Usage: BOh

User Control Format:

Field Name |Offset/Len| Type | Description

M | 0/ 2 | WORD | Number of bytes in command.
| | | If M>4, then this is a long
| | | command.

N | 2/ 2 | WORD | Maximum number of return

| | | bytes excluding the disk
I I | return code.

Field Name |Offset/Len| Type | Description

DATA | 0/ n | - | First 4 or fewer bytes of
| | | disk command.

This message is used to send the first four bytes of a disk
command to the server.

If M > 4, then a Go message is expected next, otherwise a Results
message is expected.

Corvus Systems 88

Mass Storage Systems GTI 0l1d Disk Server Protocols

Name: Last ‘ Protocol ID: -
User Control Length: 0 Message type: -

User Data Length: depends on command Socket Usage: AOh

User Data Format:

Field Name |Offset/Len| Type | Description

DATA | 0/ n | WORD | M minus 4 bytes of
| | disk command

- D D D WS T S R NS WS U TR K T G G A W AR W IS GES GED MR W} ED W G W SRR GED W IS GIE USSR GNP WS D M WP G N W G R R R Ay WR G e WS WS E G

The Last message is used to send the last M-4 bytes of a long
command to the server. This message is sent in response to a Go
message from the server. M is the M from the Disk Request
message.

If there are no errors, the next message from the server should
be the Results message.

This command is always sent to socket AOh.

Corvus Systems 89

Mass Storage Systems GT1I 0ld Disk Server Protocols

Name: Go Protocol ID: -
User Control Length: O Message type: -
User Data Length: 2 Socket Usage: BOh

User Data Format:

GO | 0/ 2 | WORD | 'GO' - 474Fh

The Go message is sent by the server in response to a Disk

Request message. It tells the client that the server is ready to
receive the Last message.

If the most significant bit of the first byte of the GO Field

(i.e., the 'G' byte) is on, the disk has been reset and the
operation should be restarted.

Corvus Systems 90

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Results Protocol ID: -
User Control Length: 3 Message type: -

User Data Length: depends on command Socket Usage: BOh

User Control Format:

Field Name |Offset/Len| Type | Description

NACTUAL | O / 2 | WORD | Number of bytes actually
| | returned including the disk
| | | return code.

- D D G ED G D (D G P G D G G WD W R N M GNP W G A T} G YL GED SR D UEE R R D GRO WRS WD M) WS eh Th T GUR UEe wAC HAS Eve R W A T S W W e S

- — - S G G G (N U D D D I SED G IS G GE GED MU GNN GIS W GHN W IR GVE GED SER GO CH GHD GED GNG GER GES GES UCH FRS ENS GNP S IR MEE B 1B G AN WM R I B D I WS G am

Field Name |Offset/Len| Type | Description

- O G G G G G R WS I WD GNP IS S WP G I GES GED EE SR IR R D EBN VA AR I GED SED GRS GG NP HNM G R GER AR AN GER AED W ALY W B0 EED SR WS SHE VR CEM SN S GE Gm B S

DATA | 0/ n | ARRY | Results of disk command
| | | (NACTUAL-1 bytes).

This message contains the results of a disk command.

If the most significant bit of the first byte of the NACTUAL
field is on, the disk has been reset and the operation should be
restarted.

Corvus Systems 91

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Find a server Protocol ID: OlFEh
User Control Length: O Message type: O0lh
User Data Length: 8 bytes Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
TMSGTYP | 2, 1 | BUTE | Message type - oh
"M | 3,2 | WORD | Length of command - 0001h
N | 5,2 | WORD | Expected length of

| | | result - 0000h

This message is used to broadcast an illegal disk command. The
disk server and the OmniDrive respond to this message with a
Results message; The Bank does not respond to this message.

Some host systems using this protocol broadcast an illegal disk
command during power on to find servers on the network. They try
to boot from the first server that replies. To prevent host
systems from booting from The Bank, The Bank controller ignores
the illegal command opcode FFh and does not return any status.
Other illegal commands are acknowledged.

Corvus Systens 92

Mass Storage Systems GTI New Disk Server Protocols

NEW SERVER PROTOCOL

Disk servers with PROM versions DS8A.A or DSD18A do not support
the new disk server protocol.

Disk servers with PROM version DSD9B1D and later, OmniDrives, and
Banks support the old disk server protocol as well as the new
disk server protocol.

The new disk server protocol is similar to the old in basic
message exchange; that is, for a short command the client sends a
Disk Request message and expects a Results message; for a long
command, the client sends a Disk Request message, the server
replies with a Go message, the client sends a Last message, and
the server replies with a Results message. However, the new
protocol uses different sockets than the old, and includes more
information with each message. The new protocol also includes
three new messages: Abort, Cancel and Restart.

With the new disk sexrver protocol, the client always sends the
Disk Request message to socket 80h of the server, and the server
always sends the Go message to socket 80h of the client. For the
Last and Results messages, the server and the client respectively
specify to which socket (AOh or BOh) to send the message. All
asynchronous messages (Cancel, Restart, and Abort) are sent to
socket 80h.

The new disk server protocol requires that a media ID be sent
along with each Disk Request. This is to prevent the case when
the media is swapped and the host unknowingly attempts to write
to the wrong tape. During power up, the controller generates a
random number to be used as the media ID of the tape. This
number is based on the value of the free running counter of the
6801 clocks; it is random and has a value between 0-OFFFFh.

The host can obtain the current media ID by issuing a Get Drive
Parameters command with a media ID of zero. A media ID of zero
is honored by the controller regardless of the current ID. The
current media ID is one of the parameters returned by the Get
Drive Parameters command.

The controller broadcasts a Cancel message during power up to
inform all hosts on the network about a media change. If a host
does not receive or act upon the Cancel message, it will receive
a Wrong Media ID error message when it tries to access the tape.
The host can recover by reissuing a Get Drive Parameters command
with an ID of zero in order to obtain the new media ID number.

The new disk server protocol also requires that a request ID be
sent along with each disk command. This is done so that either
the disk server or the host can cancel, abort, or restart a
particular command. The request ID is selected by the host, and
can simply be an integer which is incremented for each request.

Lorvus Systems 93

Mass Storage Systems GTI New Disk Server Protocols

Any Cancel, Restart, or Abort message includes a field which
indicates the reason for the abnormal condition. The possible
reason codes are summarized below:

02h

03h

04h

05h

Corvus Systems

Meaning

Timed out - either the disk server timed out
waiting for a Last message, or the host timed out
waiting for a Go or Results message. See chapter
3 for more information on timeouts.

Offline - the disk device is currently offline for
backup or reformatting.

Oout of synch - the server has received a Last
message when it was not expecting one.

Wrong media - the MEDIAID in the Disk Request
message does not match the current media ID.

Rebooted - the server has just come online.

94

Mass Storage Systems GTI New Disk Server Protocols

Name: Disk request Protoccl ID: O01FFh
User Control Length: ©0 Message Type: 0001lh
User Data Length: 18 Socket Usage: 80h

User Data Format:

PID | 0/ 2 | WORD | Protocol ID # - Ol1lFFh
"QEEEQE"'T"'5_}'E"T'QSEB"T“QQ;;;;;'E§;;'3'68515 """"""
_RQSTID | 4/ 2 | WORD | Request 10
"MEDIAID | 6/ 2 | WORD | Meaia 1p
" RESHOST | 8, 1 | BYTE | Result most
" RESSOCK | 9 / 1 | BYTE | Result socket - AOh or BOh
M | 10/ 2 | WORD | Number of bytes in command.

| | | If M>4, then this is a long
| | | command.
N | 12 /2 | WORD | Maximum number of return

| [| bytes excluding the disk
| | | return code.

DCMD | 14 / 4 | ARRY | First 4 or fewer bytes of
| | | disk command.

S G S e D G T T A Sun G N T WSS S S . e RS . G S . S TN SE SR W R e WA UG T Tee SEW Sh TR SR M W SEP WA T W SN i R SR S GRS MR M

This message is used to send the first four bytes of a disk
command to the server. It tells the server to which host
(ResHost) and to which socket (ResSock) to send the reply.

The host selects the request ID. The media ID was established
during the first message exchange between the host and this
server. If the media ID does not match the server's current
media ID (because someone has switched Bank tapes, for example),
then the server will not respcond to the Disk Request message,
but will send a Cancel message instead. The Cancel message
includes the current media ID.

If M > 4, then a Go message is expected next, otherwise a
Results message is expected.

Corvus Systems 95

Mass Storage Systems GTI New Disk Server Protocols

Name: Last Protocol ID: O01lFFh
User Control Length: 12 Message Type: 0002h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
TMseTys | 2/ 2 | WORD | Message type - 0002h
TTRosTID | 4/ 2 | WORD | Request 1D
reserved | 6/ 2 | WORD | Reserved - use 0's
T yeserved | 8/ 2 | WORD | Reserved - use o's
" reserved | 10/ 2 | WORD | Reserved - use 0's

Field Name |offset/Len| Type | Description
DATA | 0/ n | ARRY | M minus 4 bytes of disk
| I | command

The Last message is used to send the last (M-4) bytes of a long
command to the server, where M is the M from the Disk Request
message. This message is sent in response to a Go message from
the server. Last messages are sent to socket AOh or BOh,
whichever was specified in the Go message.

If there are no errors, the next message from the server should
be the Results message.

Corvus Systems 96

Mass Storage Systems GTI New Disk Server Protocols

Name: Abort Protocol ID: O01FFh
User Control Length: 0 Message Type: 0003h
User Data Length: 8 Socket Usage: 80h

User Data Format:

T 45D WY LI S N I WS G WD GEL GER WED S GUR SN NGV GID YR D IR GEL W GIE G A G WED N ERE SEN GHD GEN G VEN SN GRD D GNB GAN I N SEY AED SN W TED VAP R GNP NV TR GNS RPN S8

. W A DY WS S N CED D D R T WD GAS SN D R D D D S WS D W SES G S WU G CHN GEN SIS WD SN GNP G GND TR SN W GES G G G S T A IR VD GID D D SN ED GND GV R M WS

PID | 0/ 2 | WORD | Protocol ID # - O1FFh
"MSGTYP | 2/ 2 | WORD | Message type - 0003h
"ROSTID | 4/ 2 | WORD | Request Ip
"REASON | 6/ 2 | WORD | Reason for abort:

| | | 01lh = timed out waiting for
I i [disk server response

GRS S G S Y W W\ CTS OV G A BT GER M WL CIN GRS M NI NI S GES e CHD G GUR GED WD % GND GHM 3B SN W SFS MID UER GED S GIV A U G G G SN @R WP AD GE SD WD I G We wm e

This message tells the server to abort request RQSTID. If the
RQSTID is 0 then abort any requests from this host.

Corvus systems 97

Mass Storage Systems GTI New Disk Server Protocols

Name: Go Protocol ID: O1lFFh
User Control Length: 0 Message Type: 0100h
User Data Length: 8 Socket Usage: 80h

User Data Format:

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
TMSGTYP | 2/ 2 | WORD | Message type - 0100n
“ROSTID | 4/ 2 | WORD | Request ID
" reserved | 6, 1 | BYTE | Reserved - use 0
"TLASTSOCK | 7 / 1 | BYTE | Socket number to which Last

| | | message should be sent
| | | (AOh or BOh)

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message for request RQSTID.

Corvus Systems 98

Mass Storage Systems GTI New Disk Server Protocols

Name: Results Protocol ID: O1FFh

User Control Length: 12 Message Type: 0200h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

- S G - D S D D D D G D S D D S S T G G S FE G GEN D L M W S CHD WD G SHD GSE MED WA SAN EW U G GHS SER GWY S e r SN W G W AN A e

- D - G I S D S S G I S D G S G IR G N S G S . S S W T W) G S SER W Jwe ten WP GEP S GNP M SN W W S S G N G S G S

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
MSGTYP | 2/ 2 | WORD | Message type - 0200n
CROSTID | 4/ 2 | WORD | Request 1o
U NACTUAL | 6/ 2 | WORD | Number of bytes acutally

| | | returned, including the disk
| | | return code.

bl R e e ke Lkl X E T ————

reserved | 8 1 | BYTE | Reserved ~ use 0
RETCODE | 9 1 | BYTE | Disk return code
reserved [10 / 2 | WORD | Reserved ~ use 0's

T W G G s I I W TR NS IS A VD GRS G S e SR IR BN S SN S S W TN WSS (T A M G ATV W U7 v M G T S R NS WAL WS WA WP M S SRR S

. D S G GE G GE TR VT D GHN GES Gee G A G VN G D W Ve D GED WSS SR U G KIS I G GRS G St T A7 GES WIS WS 4D MW AR MR AN . A WY G GmR Nhe e

S A G G G RIS 00 3T W WS W S D D G S D G GRS R Ger (R G W ST GER WS GE AT VR M1 MM GRS KN VD MR W S A% S WD EED G G SN e GNP W N G S GV WY

DATA ; 0 / n | ARRY | Results of disk command
: | | (NACTUAL-1 bytes)

T SR LT W TH GHE MDD AN WIS G A Gwe GNE M w ee G e S SN SR G T S NS IR GED G UV CHS WS GEM LD NS e G5 G WED WW G D G S S NS M N S e W A e

This message contains the results of a disk command. It is sent
to socket AOh or BOh, whichever was specified in the Disk Request
message.

Corvus Systems 99

Mass Storage Systems GTI

Name: Cancel
User Control Length: O

User Data Length: 10

User Data Format:

New Disk Server Protocols

Protocol ID: O01FFh
Message Type: 0300h

Socket Usage: 80h

Description

Reason for cancel:
02h - disk device has gone
offline
04h - the MEDIAID in the
Disk request message
does not match the
current MEDIAID

Field Name |Offset/Len|
PID | 0/ 2 |
MSGTYP | 2/ 2 |
RQSTID | 4 / 2 |
REASON | 6 / 2 |
| I

I I

I I

I |

I I

I |

MEDIAID | 8 / 2 |

This is the server's mechanism for cancelling a request. RQSTID
identifies the request which was cancelled.

Corvus Systemns

100

Mass Storage Systems GTI New Disk Server Protocols

Name: Restart Protocol ID: O01FFh
User Control Length: ©0 Message Type: FFOOh
User Data Length: 10 Socket Usage: 80h

User Data Format:

D D - - D W I W W R G GED U D WS NS R I S WS TE ED GER R AER AR T WD N VRS GV G GER W A G P SR AW AR S N A

PID | 0/ 2 | WORD | Protocol ID # - O1FFh
T MSGTYP | 2/ 2 | WORD | Message type - FFOOR
"RQSTID | 4, 2 | WORD | Request 1>
T REASON | 6/ 2 | WORD | Reason for restart:

I

| O05h - server has been

| rebooted

| 03h - out of synch: a Last
| message was received
| when one was not

i expected.

[O0lh - timed out: Last

{ message not received
f after Go was sent

D S D D G IR G WD (TR NS SE 1T D IR WS CuS G4 ANE GHD GES G SED GED SED CHD GNS GHD WM GUR GRC W) HEN SN MM WS D G I GNP GRS S EE GES SER GNP GED N RS N FEE D S N G e Sms

MEDIAID | 8 / 2 | WORD | Current Media ID

T D D D G5 T ML G S NS W (U3 G I GER W GRS SN G GED WS G W SER D CHD G S G WS GRS G RAN T RO O M WS NGNS GES GED NN NS 63D MR CN MNP S WSS e GEb MR WS SED W Ghe

This is the server's mechanisn for telling the host to restart
request. This tells .the client to send request RQSTID again.
ROSTID is zero then the client shonld restart any requests
pending t¢ that server.

MEDIAID is the current media ID. If it does NOT match the

MEDIAID of the pending request, then the the media was changed
(e.g., changing a Bank tape) while the server was offline.

Corvus 3vstems

a
If

101

Muss Storage Systems GTI Name Lookup Protocols

CONSTELLATION NAME LOOKUP PROTOCOL

The Constellation name lookup protocol is used to identify
devices on the network by name. It is currently supported by
disk servers DSD18A, DSD9B1D, and later, all OmniDrives, and all
Banks. It is NOT supported by disk server DS8A.A.

The messages are summarized below:

Hello

Goodbye

Who Are You
Where Are You
My ID Is

The Hello and Goodbye messages are broadcast during power up and
power down respectively, to announce the presence or absence of a
device. The Who Are You and Where Are You messages can either be
broadcast or directed; a My ID Is message is expected in
response.

Each device on the network can be identified by its name, its
Oomninet address, or its device type. Using the name lookup
protocol, you can find the answers to such questions as, What are
the addresses of all the disk servers on the network? and What is
the address of the disk server named RDSERVER?

Each device is assigned one or more device types which are used
to identify the types of services it supports. There are two
kinds of device types: generic and specific. Generic device
types define a class of Omninet hosts, while specific device
types define a specific service. The currently assigned device
types are listed in Appendix B.

As always, there are a few exceptions to the rules; the device
types for disk devices are listed below. As you can see, the
disk server and the Bank each respond to only one device type.

Generic Specific
Rev B/H disk server 1 1
OmniDrive 1 6
Bank - 5

Corvus Systems 102

Mass Storage Systems GTI Name Lookup Protocols

For example, the following algorithm finds all (booting) disk
servers on the network:

Do Echo

Resel Up Recelve
On Socket 80h

I
>

Figure 2.2a: Find all disk servers using directed messages

Corvus Systems 103

Mass Storage Systems GTI

Name Lookup Protocols

vou could also use the following algorithm, but it is not quite
as reliable since it uses a broadcast command and timeouts:

(s

Setup Recelve

On Socket 80h

L 4

Send Who Are You
Device Type = 1
To Destination FFh

Figure 2.2b:

Corvus Systems

Find all

Setup Recieve
On Sockel B0h
Again

+

o

disk servers using broadcast messages

104

Mass Storage Systems GTI Name Lookup Protocols

The following algorithm is used to reply to Who Are You and Where
Are You messages:

1. Respond to all device types that apply.

2. If the device type is FFh, the device responds with its
most specific device type.

3. If the device type is generic, and it is one of the
generic types assigned to this device, then the device
responds with the same generic device type. For example,
if the OmniDrive receives a Who Are You, device type =
0lh, it replies with a My ID Is, device type = 01h.

4. If the device type is specific, ther the device
responds with the same device type.

Corvus Systens 105

Mass Storage Systems GTI Name Lookup Protocols

Name: Hello Protocol ID: OlFEh
User Control Length: O Message Type: 0000h
User Data Length: 18 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
TMseTYP | 2/ 2 | WORD | Message type - 0000h
TSOURCE | 4/ 2 | WORD | Omninet address of device
T DEVIYPE | 6, 2 | WORD | Device type
" NaME | 8, 10 | BSIR | Device name

This message should be broadcast whenever a host "logs onto" the
network.

Whenever a disk server receives one of these messages, it adds
the device to its Active User Table. If DEVTYPE is 1,
indicating that the Hello message came from some other disk
server, then the receiving disk server sends back a My ID Is
message to the originator of the Hello message. See the
discussion of the Active User Table in the next section.

Corvus Systems 106

Mass Storage Systems GTI Name Lookup Protocols

Name: Goodbye Protocol ID: OlFEh
User Control Length: 0 Message Type: FFFFh
User Data Length: 18 Socket Usage: 80h

User Data Format:

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
MSGIYP | 2/ 2 | WORD | Message type - FFEFR
SOURCE | 4/ 2 | WORD | Omninet address of device
" DEVTYPE | 6, 2 | WORD | Device type
" UNAME | 8/ 10 | BSTR | Device name

U O N S 6 . S L G R S S s e G G e e W T - S — D - - W . WA N S o (W - S - o - —

This message should be broadcast whenever a host "logs off" the
network.

Corvus Systems 107

Mass Storage Systems GTI Name Lookup Protocols

Name: Who Are You Protocol ID: OlFEh
User Control Length: O Message Type: 0200h
User Data Length: 8 Socket Usage: 80h

User Data Format:

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
Twserer 1 2/ 2 | WORD | Message type - 0z00n
TTSoURCE 1 4/ 2 | WORD | Omninet address of deivce
TToEvTerE 1 6 s 2 | WoRD | Device type

This message can be directed or broadcast. Only devices which
are assigned the specified DEVTYPE will respond. If DEVTYPE =
FFh, all devices will respond.

The expected response is a My ID Is message.

Corvus Systens 108

Mass Storage Systems GTI Name Lookup Protocols

Name: Where Are You Protocol ID: O1lFEh
User Control Length: O Message Type: 0300h
User Data Length: 18 Socket Usage: 80h

User Data Format:

---—-————m---—-——--—------—————--—-—————mn—mn————n—————-—_—

Field Name |Offset/Len| Type | Description

———--—-----——-—--—-—-———-—u———-—-—--—-————————-u——-—-—w-——n

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
Tuseres | 2/ 2 | WORD | Message type - 0300h
TTeoUmeE | 4/ 2 | WORD | Omninet addrass of device
T oEviePE | 6/ 2 | WoRD | Device type
TramE 1 8/ 10| BSTR | Device mame

--—------—--——-------—-----------—---m--—--mm-—-—-—-————---

This message is broadcast. Only devices with the specified name
and device type will respond.

The expected response is a My ID Is message.

Corvus Systems 109

Mass Storage Systems GTI

Name: My ID Is
User Control Length: 0

User Data Length: 18

User Data Format:

PID | 0/ 2 |
CMsetye | 2,2 1
T sourcE | 4,2 |
CDEVIYPE | 6,2 |
S NaME | 8,101

This message is sent in
You message.

Corvus Systems

Name Lookup Protocols

Protocol ID: Ol1lFEh
Message Type: 1000h

Socket Usage: 80h

reponse to a Who Are You or a Where Are

110

Mass Storage Systems GTI Active User Table

ACTIVE USER TABLE

It is not practical to implement the Constellation name protocol
on all hosts, because the name lookup protocol requires that a
host respond to an asynchronous message. Not all processors or
operating systems support asynchronous events. Therefore, Corvus
provides a rudimentary name service with the Active User Table.
The contents of this table were described in Chapter 1. The
Active User Table commands are repeated below:

AddActive
DeleteActiveUsr
DeleteActiveNumber
FindActive
ReadTempBlock
WriteTempBlock

An Active User Table is maintained on each disk device on the
network. Whenever a disk device receives a Hello message, it
adds the user to its Active User Table with an AddActive command.
Similarly, whenever a disk device receives a Goodbye message, it
deletes the user with a DeleteActiveUsr command.

If all the hosts on the network broadcast a Hello message on boot
up, and broadcast a Goodbye message as part of the shut-down
procedure, then the Active User Table will usually contain a list
of which hosts are currently active on the network.

However, since the Hello and Goodbye messages are normally
broadcast, it is possible that a disk device may miss a Hello or
Goodbye message, and that an Active User Table may not reflect
the actual state of the network. It is also possible, in a
multiple disk server network, that the Active User Table on one
disk device may not be the same as that on another disk device.

Each disk device is responsible for initializing its Active User
Table. Here is the sequence of events that occurs when a disk
server is powered on:

1. The disk server broadcasts a Hello message with a
device ID of 1.

2. If another server is present on the network, it will
add the new server to its Active User table, and send a My
ID Is message back to the new server.

3. If the new server receives a My ID Is message, it
reads the Active User table from the server that sent the
message, and uses it to initialize its own table.

4. If the new server does not receive a My ID Is messadge,

then there are no other disk servers on the network, so it
initializes its Active User table to blanks.

Corvus Systens 111

Mass Storage Systems GTI Active User Table

The OmniDrive goes through a process similar to the one detailed
above, with one difference. The OmniDrive broadcasts a Hello
message with a device ID of 1, so that the old disk server PROM
will recognize it as a disk device. The OmniDrive then
broadcasts another Hello message with a device ID of 6, so that
the Active User Table will contain device ID 6 instead of 1.

Also for the sake of compatability, the OmniDrive replies to a
Hello message with a My ID Is message of device type 1. For the
Who Are You and Where Are You messages, the OmniDrive replies
with device type 6.

The Bank has an Omninet device type of 5. This number is used
for the Hello message during power on and for response to the Who
Are You message. The Bank does not implement the Active User
Table.

Corvus Systems 112

Mass Storage Systems GTI Disk Drivers

I
OUTLINE OF |
A DISK DRIVER | 3
I
I

This chapter outlines a simple disk driver that interfaces to any
Corvus mass storage device. If written properly, the same Omninet
driver can support a disk server, an Omnidrive mass storage
system, or The Bank mass storage system. A flat cable driver

can support a Rev B/H drive directly, or one connected via a MUX.

When writing a disk driver, you should remember that the Corvus
disk merely supports absolute disk sector reads-writes. It knows
nothing about which computers are connected to it, nor whether it
is connected over flat cable or Omninet. It knows nothlng about
volumes or users or file systems. In a network environment, the
drive merely knows which command came from which computer, so
that it can send the reply to the proper computer. Thus, a disk
driver for a Corvus device resides at the BIOS level of the
operating system. This is different from other network
implementations, where references to the disk may be intercepted
at the file level.

A typical BIOS level interface for a disk driver has at least
three entry points: Driver Initialization, Device Read, and
Device Write. These are the only functions discussed here.

The Device Read and Write entry points generally have the
following parameters:

Device number: this number is used as an index into a
table of device characterlstlcs, such as device type,
device location, device size, etc.

Sector number: this is the sector number to be read or
written. Disk devices consist of n sectors, numbered 0
to n-1.

Number of sectors: this is the number of sectors to be
read or written.

Buffer: this is the address of a buffer where the data is
to be read into or written from.

Result code: this value is returned. It either indicates

a successful operation, or indicates the nature of the
failure.

Corvus Systens 113

Mass Storage Systems GTI Disk Drivers

The Device Read portion of the driver sends a Corvus disk Read
Sector command, and returns the data in the user's buffer. The
Device Write portion sends a Write Sector command along with the
data in the user's buffer. The sector command used (128, 256,
512, or 1024 bytes) depends upon the sector size used by the
operating system. The examples below assume a 512 byte sector
size. Any information that depends on sector size is marked.

For the purposes of this chapter, it is assumed that the disk
driver treats the entire disk as one device. See the
Constellation Software General Technical Information Manual for
information on how a Constellation disk driver treats a disk as
more than one device.

There are several types of errors that the driver can encounter:
timeout errors (device does not respond), disk errors (controller
errors), hardware errors (Omninet transporter errors). Your
driver must map these errors into the codes that your operating
system defines.

OMNINET

You may want to refer to the following manuals while reading this
section:

Oomninet Local Area Netwo General Techni nfo

a '
Chapter 3, pages 31-38, which describes the Omninet commands
Setup Receive, Send, etc.

Chapter 2 of this manual, which describes the disk server
protocols.

Chapter 1 of this manual, which describes the sector read
and write commands.

The disk driver described here is simplified in two ways. First,
this description assumes that the disk driver is the only user of
the tranporter (TM) interface card; that is, the disk driver
expects to be able to use the transporter at will and it throws
away messages it does not recognize. In reality, the transporter
functions should be handled by a transporter driver, and the disk
driver should call on the transporter driver to do transporter
functions. Corvus is currently developing a specification of a
transporter driver and software which uses such a driver.

Secondly, the description of the disk driver given here ignores
whether the transporter is buffered or unbuffered. A driver
which handles a buffered transporter will naturally be more
complicated since it must manage the buffer space and move data
to and from user memory. Of course, if a transporter driver

Corvus 3ystems 114

Mass Storage Systems GTI Omninet

existed which the disk driver could use, then the transporter
driver would handle the buffering, and the disk driver would not
have to worry about whether the transporter were buffered or not.
This is another reason for having a transporter driver.

However, as mentioned above, the driver described here does not
assume the existence of a transporter driver.

The driver is described by the data structures, flowcharts and
notes on the next few pages. The flowcharts cover how to send
short and long commands and describe timeout recovery procedures.
Many systems have no recourse when a timeout error occurs. a
driver written for one of these systems should implement the
timeout recovery described here, but instead of reporting a
timeout error, restart the operation from the appropriate point.

Figure 3.1 reviews the flow of data for a read (short) command,
and for a write (long) command, and shows the areas where
timeouts can occur.

Short Command Long Command

Personal Disk Personal Disk
Computer Server Computer Server

— :3 \
13> 1 / 11;
L \ i

T4

.__/

Figure 3.1 Timeouts for short and long command exchanges

Corvus Systems 115

Mass Storage Systems GTI Oomninet

There are two types of events which would cause a driver to time
out: waiting for a response from the local transporter, and
waiting for a disk server response. These can be broken down
further as follows:

Transporter timeouts

To: The time between a command strobe and the next ready.
Recommended timeout value: 1lO0ms.

T1: The time between strobing a receive command and the
receive result changing from FFh to FEh. This is very
fast, ususally within 200 microseconds. However, an
incoming receive could happen during the processing of
the Setup Receive, so the elapsed time could be
several milliseconds. Recommended timeout value:
10ms.

T2: The time between strobing a Send command and its
result changing. The result for a Send command does
not change until an acknowledgement is received or the
transporter gave up after sending 10 retransmissions.
This can produce a very long delay (in computer time),
since 11 transmissions are possible and the
transporter will accept messages for any receives
which are set up. Recommended timeout value: 100ms.

Disk Server timeouts (refer to figure 3.1)

T3: The time between the completion of the Send of the
Disk Request message and the receipt of the Results
or Go message. This interval could be as long as 3
minutes for a disk, and 11 hours for a Bank.
Recommended timeout value: see below.

T4 The time between the completion of the Send of the
Last message and the receipt of the Results message.
Recommended timeout value: 150ms for a disk, 20
seconds for a Bank.

The disk server itself will timeout between sending a Go message
and receiving the Last message. This timeout value is 768ms.
This time is indicated in figure 3.1 by TDS.

Most systems do not use the transporter timeouts (TO, T1l, and T2)
since there is nothing they can do if the transporter is not
working reliably.

All systems must support the disk server timeouts (T3 and T4) in
order to work reliably in a multiple server environment. The
timeout value for T3 must be variable, since a 3 minute or 11
hour timeout is not practical.

Corvus Systems 116

Mass Storage Systems GTI Omninet

The recommended approach to implementing the T3 timeout is to use
an adaptable timeout. Since different devices have different
timing characteristics, the timeout value must depend upon the
device type. Also, as more servers are added to a network, the
response times will lengthen. Therefore, the timeout value must
also adapt to the network environment.

The flow chart in figure 3.4 shows a very simple method for
adapting the timeout values. The timeout value should start out
relatively short (3 seconds for a disk, 20 seconds for a Bank),
and increase only when a long delay is encountered.

The 0l1d Disk Server Protocol is described first, and then the New
Disk Server Protocol is described.

Corvus Systems 117

Mass Storage Systems GTI 0ld Disk Server Protocols

OLD DISK SERVER PROTOCOL
This section describes the o0ld disk server protocol.

Sample data structures for a disk server driver using 0ld Disk
Server Protocol

First the data structure is declared, then a list of offsets
into the structure are declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command vector,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

“e We We We We We “e We we “we “wo

conmmands. .
TCmd .BYTE 0 : OpCode - command code
.BYTE 0 ; ResAdr - high order byte of result address
.WORD 0 ; - low order word of result address
.BYTE O 7 Sock - socket number
.BYTE O ; DatAdr - high order byte of data address
.WORD O H - low order word of data address
.WORD O ; Datalen - data length
.BYTE 0 CrtlLen - user control length
.BYTE OFFh ; Dest - destination host number
; offsets
OpCode .EQU O ; offset to OpCode
ResAdr .EQU 1 ; offset to ResAdr
Sock .EQU 4 ; offset to socket number
DatAdr .EQU 5 ; offset to DatAdr
DataLen.EQU 8 ; offset to data length
CrtlLen.EQU 10 ;7 offset to user control length
Dest .EQU 11 ; offset to destination host number (Send only)

Corvus Systems 118

Mass Storage Systems GTI 0ld Disk Server Protocols

Sample data structures for a disk server driver using 0ld Disk
Server Protocol (cont.)

Result record definitions (see section 2.2)
Every driver must have 2 separate result records, one for
sends, and one for receives.
7 Send result record

we we “e “e “we “e

SndRes .BYTE O transporter return code
+BYTE O unused
.WORD O unused

SndUC ,.WORD 0 M - the number of data bytes to send to drive
.WORD 0 N - the maximum number of data bytes

expected on receive
offsets
offset to transporter return code
offset to M
offset to N

RCode .EQU O
M .EQU O
N .EQU 2

e Ne We We “e Wwe “e we wo “w»

Receive result record

DLen .EQU 0
DCode .EQU 2

offset to DLen
offset to DCode

’
RcvRes .BYTE O 1 transporter return code
.BYTE O t Src - source host number
.WORD O ; Len - actual length of data received
RcvUC .WORD 0 ; DLen - number of bytes actually returned from driv
.BYTE 0 ; DCode =~ disk return code
;1 offsets
Src +EQU 1 ;7 offset to Src
Len +EQU 2 ; offset to Len
7
H

H
H
; Data area buffers
GoData .BYTE OFFh
.BYTE OFFh

this is where we receive the 'GO' packet

-

DCmd «WORD O
«WORD O

space for the disk command

-e

Corvus Systems 119

Mass Storage Systems GTI

O ~e ~e e ~e we ~o ~e

a T are

* w8 we wo “e “o

OkCode .EQU
GiveUp .EQU
TooLong.EQU
NoSock .EQU
BadHdr .EQU
SndErr .EQU
TOExrrDS . EQU
TOErrTR.EQU

we weo “weo

rvRet .BYTE O

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with

.
4

01ld Disk Server Protocols

Sample data structures for a disk server driver using 0ld Disk
Server Protocol (cont.)

DrvRet is a global variable in the driver which each routine
sets. It is the value that will be returned to the operating
system upon completion of the driver call.

Driver return code

transporter return codes.

0

128
129
130
131
140
252
253

TimeOut.WORD O
DSNum L.BYTE O

Corvus Systems

e e We We We W “e “we w0

we wa

*T

T - gave up after n retries

T - message too long

T - socket not initialized

T - header length mismatch - should never happen
X -

unable to send messages to disk server

- timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

*
!

The following global variables are set on each read or
write, to the values

specified for the device.

used to control disk server wait loop
disk server number

120

Mass Storage Systems GTI 0ld Disk Server Protocols

Setup Receive
For Results
Messsge

-

«w

~

Figure 3.2: Flowchart of a short (read) command
0ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systenms 121

Mass Storage Systems GTI 01d Disk Server Protocols

1. Setup receive for results.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <~- address of RcvRes

TCnd+Sock <= BOh

TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+Crtllen <= 3

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send disk command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4 (4 byte read command)
TCmd+Crtllen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)

SndUC +M <= 4

SnduC +N <- 512 (use appropriate sector size)
DCmd+0 <- 32h (use appropriate read command)
DCmd+1 <- sector address byte d

DCmd+2 <- sector address 1lsb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.4 and
accompanying notes.

4. If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

5., Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Torvis Systems 122

Mass Storage Systems GTI 0ld Disk Server Protocols

6. Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 123

Mass Storage Systems GTI 0ld Disk Server Protocols

2 .

£ 4[K]

Selup Recelve

Figure 3.3: Flowchart of a long (write) command
0ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systens 124

Mass Storage Systems GTI 0ld Disk Sevver Protocols

l.

2.

Setup receive for the 'GO' command.

TCmd+OpCode <= FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of GoData
TCmd+Datalen <- 2

TCmd+CrtlLen <- 0

RcvRes+Rcode <= FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the first 4 bytes of the write command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4

TCmd+CrtllLen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <= FFh (initialize result code)

SnducC +M <- 516 (use appropriate sector size)
SnducC +N <=0

DCmd+0 <= 33h (use appropriate read command)
DCmd+1 <= sector address byte d

DCmd+2 <=~ sector address lsb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
(SndRes+Rcode). When this value goes to zero, the 'GO'
message has been received. See figure 3.4 and accompanying
notes.

If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Corvus Systems 125

Mass Storage Systems GTI 0ld Disk Server Protocols

6.

10.

Check the first byte of the data buffer (GoData). If the
most significant bit is on, the disk server has been reset,
and you should restart the sequence from the beginning.

If the data received is anything but the 2 bytes 'GO', the
message is irrelevant. Setup the receive again, and wait for
another response.

Set up another receive to get the results of the next Send.

Tcmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
Tcnmd+Sock <= BOh

TCcmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4

TCmd+Crtllen <- 3

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Ssend the rest of the Write command. Note that the socket
number is AOh, not BOh as for the previous commands.

TCmd+OpCode <=~ 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCnd+Sock <= AOh

Tcmd+DatAdr <- address of user's buffer
Tcmd+DatalLen <- 512 (use appropriate sector size)
TCmd+Crtllen <- 0

TCmd+Dest <~ DSNum

sndRes+Rcode <- FFh (initialize result code)
User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check the first byte of the User Control Data (RcvUC +DLen) .
If the most significant bit is on, the disk has been reset.
Start the entire seguence over.

Check the disk result code (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 126

Mass Storage Systems GTI 0ld Disk Server Protocols

Figure 3.4: Wait for disk server response
0ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is o0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
0 (message received), or when the timeout value is reached.

4, If the number of retries is exceeded, report a timeout error
and exit.

Corvus Systems 127

Mass Storage Systems GTI 0ld Disk Server Protocols

1
End Receive

Send Flush 2
Command

Done

Figure 3.5: Flush
0l1ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Do an End Receive on socket BOh.
TCmd+OpCode <= 10h (End receive command)
TCnd+ResAdr <- address of SndRes
TCmd+Sock <= BOh
sndRes+Rcode <- FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Corvus Systems 128

Mass Storage Systems GTI 0ld Disk Server Protocols

2. Send a Flush command.

TCmD+0OpCode <= 40h (Send command)
TCmD+ResAdr <- address of SndRes
TCmD+Sock <= BOh

TCmD+DatAdr <- address of DCmd buffer
TCmD+Datalen <~ 4

TCmD+CrtlLen <- 4

TCmD+Dest <- DSNunm

SndRes+Rcode <- FFh (initialize result code)
SnducC +M <=0

SnduC +N <=0

If transporter result (SndRes+Rcode) does not change within
100 ms, report a hardware error (TOErrTR) and exit.

NEW DISK SERVER PROTOGOL

The description of the New Disk Server Protocol is very similar
to that of the 0ld Disk Server Protocol, but there are two
important differences. The first is that the driver must be
prepared to generate request IDs and use media IDS. The second
is that the driver must be prepared to receive a Cancel or
Restart message at any time. The flowcharts for Wait for Disk
Server Response (figure 3.9) and Flush (figure 3.10) are
therefore more complicated. The flowcharts for the Short (figure
3.6) and Long (figure 3.7) commands look similar to those for the
0ld Disk Server Protocol (figures 3.2 and 3.3), but the
explanations differ.

The new disk server protocol requires that you specify to which
socket, AOh or BOh, the server should send the Results message.
The server tells you to which socket you should send the Last
message.

You will also see that some of the fields in the declarations are
described in three places: as part of the RcvUC record, as part
of the SndUc record, and as part of the Dcmd record. This is
because the protocol information is sometimes included in the
User Data portion of the message, and sometimes in the User
Control portion.

Corvus Systems 129

Mass Storage Systems GTI New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol

First the data structure is declared, then a list of offsets
into the structure are declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command record,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

Se NE N Na Ne Ve "o W %o Ve Wo e

commands.

TCmd .BYTE O OpCode - command code
.BYTE O ResAdr - high order byte of result address
.WORD 0 - low order word of result address
.BYTE O Sock = socket number
.BYTE O DatAdr =~ high order byte of data address
+WORD 0 - low order word of data address
.WORD O Datalen - data length
.BYTE O Crtllen - user control length
.BYTE OFFh Dest - destination host number

offsets

we WE Ne Wa NP Ne W We Wy We e Ws We Ve “e We o

OpCode .EQU 0 offset to OpCode

ResAdr .EQU 1 offset to ResAdr

Sock .EQU 4 offset to socket number

DatAdr .EQU 5 offset to DatAdr

DatalLen.EQU 8 offset to data length

CrtlLlen.EQU 10 offset to user control length

Dest .EQU 11 offset to destination host number (Send only)

Corvus systems 130

Mass Storage Systems GTI New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

Result record definitions (see section 2.3)
Every driver should have 2 separate result records, one for
sends, and one for receives.

we wme we we we we “o

Send result record

NActual.EQU 6
DCode .EQU 9

offset to NActual

offset to DCode

Second receive result record for Cancel or Restart
transporter return code

Src -~ source host number

Rcv80 ..BYTE O
.BYTE O
.WORD O

!
SndRes .BYTE 0 ; transporter return code
.BYTE 0 ; unused
+WORD O ¢ unused
SnduC .WORD O ¢ ProtoID - Protocol ID
.WORD O i MsgTyp - message type
+WORD O ¢+ RgstID - request ID
+.WORD O ¢ M - the number of data bytes to send to drive
.WORD 0 ; N - the maximum number of data bytes
H expected on receive
; offsets
RCode .EQU 0 + offset to transporter return code
ProtolID.EQU 0 i offset to ProtolID
MsgTyp .EQU 2 ;i offset to MsgTyp
RgstID .EQU 4 1 offset to RgstID
Reason .EQU 6 ;i offset to Reason (for Cancel and Restart)
MediaI2.EQU 8 ; offset to MediaID (for Cancel and Restart)
; Receive result record
RcvRes .BYTE 0 ;7 transporter return code
.BYTE 0 { Src = source host number
+WORD 0 ¢t Len - actual length of data received
RcvUC .WORD O : ProtoID - Protocol ID
+.WORD O ;1 MsgTyp - message type
.WORD O ¢+ RgstID - request ID
.WORD O ¢ NActual - number of bytes returned from drive
+BYTE O ; reserved
.BYTE O ; DCode - disk return code
+WORD O ;i reserved
;7 offsets
Src .EQU 1 ;1 offset to Src
Len LEQU 2 ; offset to Len
!
H
H
’

Corvus Systems 131

Mass Storage Systems GTI New Disk Server Protocols

; Sample data structures for a disk server driver using New Disk
; Server Protocol (cont.)
; Data area buffers
’
DCnd .WORD 0 ¢ ProtolID
.WORD O ; MsgTyp
.WORD 0 ; RgstID
.WORD 0 : MedialD
.BYTE O ; ResHost
.BYTE O ¢ ResSock
.WORD 0 i M
+WORD O i N
.WORD O ; space for the disk command (4 bytes)
.WORD 0
offsets
MediaID.EQU 6 offset to MedialID
ResHost.EQU 8 offset to ResHost

ResSock.EQU 9 offset to ResSock

—e We e We W we “s

M .EQU 10 offset to M
N .EQU 12 offset to N
Cmd .EQU 14 offset to start of command
; space for socket 80h messages (Go, Cancel or Resta
S80Msg .WORD O ; ProtoID
.WORD 0 ;7 MsgTyp
+WORD © : RgstID
-WORD O ; Reason, LastSock
.WORD 0 ; MedialID
; offsets

LstSock.EQU 7 Last socket for Go message

Corvus Systenms 132

Mass Storage Systens GTI New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

DrvRet is a global variable in the driver which each routine
sets. It is the value that will be returned to the operating
system upon completion of the driver call.

D ~e “e e ~e ~e ~o o

rvRet .BYTE O ; Driver return code

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

9 We “e “s “e “e

[
OkCode .EQU O

- timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

TOErrDS.EQU 252
TOErrTR.EQU 253

*
1

i *T
GiveUp .EQU 128 ; T - gave up after n retries
ToolLong.EQU 129 i T - message too long
NoSock .EQU 130 ¢+ T - socket not initialized
BadHdr .EQU 131 ;7 T - header length mismatch should never happen
SndErr .EQU 140 i * - unable to send messages to disk server
’

The following global variables are set on each call from the
values specified for the device.

® we wo weo

’

TimeOut.WORD 0
DSNum .BYTE OFFh
Media .WORD 0

used to control disk server wait loop
disk server number
media id

~e wo wo

The following global variables are set on each call.

H

;

UseSock.BYTE O ; which socket to use (AOh or BOh)
Request.WORD 0 ; bumped by 1 on each call

; The following global variables are set at driver

; initialization

MyAddr .BYTE O ; this computer's transporter address

Corvus Systems 133

Mass Storage Systems GTI New Disk Server Protocols

Selup Recelve
For Results

¥

Figure 3.6: Flowchart of a short (read) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems GTI 134

Mass Storage Systems GTI Mew Disk Server Protocols

1. Setup receive for results.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes

TCmd+Sock <- UseSock

TCmd+DatAdr <- address of user's buffer
TCmd+Datalen <- 512 (use appropriate sector size)
TCmd+Crtllen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart):

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of Rcv80

TCmd+Sock <=-80h

TCmd+DatAdr <- address of S80Msg
TCmd+Datalen <- 8

TCmd+Crtllen <~ 0

Rcv80+Rcode <= FFh (must initialize result code)
2. Send disk command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= 80h

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 18

TCmd+Crtllen <- 4

TCnd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUc +M <-4
SndUc +N <= 512 (use appropriate sector size)

DCmd+ProtoID <- 0l1FFh

DCmd+MsgTyp <- 0001h (Disk request)
DCmd+RgstID <- Request
DCmd+MedialID <- Media

DCmd+ResHost <=~ MyAddr

DCmd+ResSock <~ UseSock

DCmd+M <= 4 (4 byte read command)
DCmd-+N <- 512 (use appropriate sector size)
DCmd+Cmd <= 32h (use appropriate read command)

DCnmd+Cmd+1 <- sector address byte d
DCmd+Cmd+2 <- sector address lsb
DCmd+Cmd+3 <- sector address msb

Corvus Systens 135

Mass Storage Systems GTI New Disk Server Protocols

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.8 and
accompanying notes.

This loop must also check whether a Cancel or Restart message
has been received. See figure 3.9 and accompanying notes.

If a timeout error or cancellation occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message

received is irrelevant. Setup the receive again, and wait
for another response.

Check the User Control Data (RcvUC). Ensure the ProtolD is
1FFh, and that MsgTyp is 0200h. If not, the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+OpCode <= 10h (End Receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= 80h

sndRes+Rcode <- FFh (initialize result code)

Corvus Systems 136

Mass Storage Systems GTI New Disk Server Protocols

Figure 3.7: Flowchart of a long (write) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems GTI 137

Mass Storage Systems GTI

New Disk Server Protocols

1. Setup receive for the Go message. The Go message is sent to

socket 80h.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+Datalen
TCmd+Crtllen

Rcv80+Rcode

< -
& -
< -
< -
< -
-

L -

FOh (Setup Receive command)
address of RcvRes

80h

address of S80Msg

8

0

FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first 4 bytes of the write command.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCnmd+DatAdr
TCmd+Datalen
TCmd+CrtlLen
TCmd+Dest

SndRes+Rcode

DCmd+0
DCmd+2
DCmd+4
DCmd+6
DCmd+8
DCmd+9
DCmd+10
DCmd+12
DCmd+14
DCmd+15
DCmd+16
DCmd+17

<—
< -
L o=
<=
<=
<=
< -

& -

& -
< -
K-
<=
< -
K-
<=-
-
-
-
< -
P

40h (Send command)
address of SndRes

80h

address of DCmd buffer
18

4

DSNum

FFh (initialize result code)

1FFh (protocol id)

001h (message type = Disk request)
request id

media id

FFh

UseSock

516 (use appropriate sector size)
1

33h (use appropriate read command)
sector address byte d

sector address 1lsb

sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3 Wwait for disk server response.

This is a loop which is checking the transporter return code.
Since the Go message will be received on socket 80h, the
driver must check Rcv80+Rcode, not RcvRes+Rcode, as in all

When this value goes to zero, a message has
See figure 3.8 and accompanying notes.

the other cases.
been received.

Corvus Systems

138

Mass Storage Systems GTI New Disk Server Protocols

9.

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying
notes.

If a timeout or cancellation error occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

Check the responding disk server (Rcv80+Src). If it does

not match the destination disk server (DSNum) the message

received is irrelevant. Setup the receive again, and wait
for another response.

No box.

If the data received is anything but the Go message
(S80Msg+ProtoID=01FFh, S80Msg+MsgTyp=0100h), the message

is irrelevant. Setup the receive again, and wait for another
response.

Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <= address of RcvRes
TCmd+Sock <= UseSock

TCmd+DatAdr <= address of DCmd buffer
TCmd+Datalen <- 4

TCmd+Crtllen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart):

TCmd+OpCode <= FOh (Setup Receive command)
TCmd+ResAdr <- address of Rcv8o0

TCmd+Sock <- 80h

TCmd+DatAdr <- address of S80Msg
TCmd+Datalen <- 8

TCmd+CrtlLen <~ O

Rcv80+Rcode <= FFh (must initialize result code)
Send the rest of the Write command.

TCmd+OpCode <- 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <- specified in Go message (S80Msg+LstSock)
TCmd+DatAdr <~ address of user's buffer

TCmd+Datalen <- 512 (use appropriate sector size)
TCmd+CrtllLen <- 12

Corvus Systemnms 139

Mass Storage Systems GTI

10.

New Disk Server Protocols

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
snduC +Protold<~1FFh

sSndUC +Msgtyp<=- 002h (Last message)

SnduC +RgstId<- RegestId

SndUC +Reserl<- O

SndUC +Reser2<~ 0

SndUC +Reser3i<- 0

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check that the Results message was received (RcvUC+ProtoID =
1FFh; RcvUC+MsgTyp = 0200h). If not, the message received

is irrelevant. Setup the receive again, and wait for another
response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+0OpCode <- 10h (End Receive command)
TCmd+ResAdr <~ address of SndRes
TCmd+Sock <=~ 80h

sndRes+Rcode <=~ FFh (initialize result code)

Corvus Systems 140

Mass Storage Systems GTI New Disk Server Protocols

Figure 3.8: Wait for disk server response
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is o0,
the driver loops forever, waiting for a response. 2 timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.
3. The loop terminates when the transporter return code goes to
0 (message received), when a Cancel or Restart message is
received, or when the timeout value is reached.
See figure 3.9 for the Cancel and Restart check.

4. If the number of retries is exceeded, report a timeout error
and exit.

Corvus Systems GTI 141

Mass Storage Systems GTI New Disk Server Protocols

Cancalivd <~ False
Ruslart «-Fuine

Carcel Cancalled <- True

Restart Restarl « Trw

Figure 3.9: Check for Cancel or Restart
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions

below.

1. Has a message been received on socket 80h (Rcv80+Rcode=00h) ?
If not, continue waiting for disk server response.

2. Is the message from our server (RcvB80+Src=DSNum)? If not,
ignore the message, resetup the receive on socket 80h, and
go back to waiting.

3. Is the message a Cancel message (S80Msg+ProtoID=01FFh,
S80Msg+MsgTyp=0300h)? If so, set Cancelled flag, and exit
the wait for response loop.

4, Is the message a Restart message (S80Msg+ProtoID=01FFh,

S80Msg+MsgTyp=FF00Oh)? If so, set Restart flag, and exit
the wait for response loop.

The message is not a Cancel or Restart, so ignore it.
Resetup the receive, and go back to waiting.

Corvus Systems GTI 142

Mass Storage Systems GTI New Disk Server Protocols

Figure 3.10: Flush
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below. -

1. Do an End Receive on socket UseSock.
TCmd+OpCode <- 10h (End receive command)
TCmd+ResAdr <~ address of SndRes
TCmd+Sock <~ UseSock.

SndRes+Rcode <~ FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
l10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Corvus Systems GTI 143

Mass Storage Systems GTI New Disk Server Protocols

2. Check the Cancelled flag. If set, report an error and exit.
3. Check the Restart flag. If set, restart from the beginning.
4. End receive on socket 80h, in preparation for restart.

TCmd+OpCode <- 10h (End receive command)
TCnmd+ResAdr <~ address of SndRes
TCmd+Sock <= 80h

SndRes+Rcode <- FFh (initialize result code)
5. Send an Abort command.

TCmd+O0pCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= 80h

TCmd+DatAdr <- address of DCmd buffer
TCnmd+Datalen <- 8

TCmd+Crtllen <= 0

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
Dcmd+ProtoID <- 1FFh
Dcemd+MsgTyp <= 0003h (Abort message)

Dcmd+RgstID <- Request
Dcmd+Reason <= 0lh (Timedout)

If transporter result (SndRes+Rcode) does not change within
100ms, report an error (TOErrTR) and exit.

Corvus Systems 144

Mass Storage Systems GTI Flat cable diiver

FLAT CABLE

You may want to refer to the following manuals while reading
this section:

Chapter 1 of this manual, which describes the sector
read and write commands.

Appendix A of this manual, which describes the flat cable
interface bus.

Corvus Systens 145

Mass Storage Systems GTI

Output Byle
Count <-count ~ §

Wait For
Line to
Turn Around

4

o
4

‘
~
<<:Ei:mnw

.

Direction =
Drive to Host

‘oput Byte
Couil <-Counl + 1§

IS

©

Figure 3.11

Flat cable command sequence

Corvus Systems GTI

Flat cable driver

Direction =
Drive To Host

Direclion =
Drive To Host

Figure 3.12
Flat cable turnaround routine

146

Mass Storage Systems GTI Flat cable driver

Refer to the interface signal descriptions at the end of
Appendix A.

Disk read:

l. Send out read command (4 bytes). For each byte, check
that drive is ready (READY line high), then output byte.
See note below.

2. Wait for bus to turn around (READY line high and DIRC
line low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 512 bytes; you should
expect to receive the number of bytes specified by the read
command (128, 256, 512, or 1024).

4. Check first byte received. If the most significant bit
is on, an error occurred.

Disk write:

1. Send out write command. In our example, we send out 516
bytes. You should send out the appropriate number for the
write command that you are using (132, 260, 516, or 1028).
For each byte, check that drive is ready (READY line high),
then output byte. See note below.

2. Wait for bus to turn around (READY line high and DIRC line
low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 1 byte.

4. Check first byte received. If the most significant bit is
on, an error occurred.

Note: Some care must be exercised in sending out at least the
first byte of a command if a multiplexer is being used. There is
a potential timing problem if the system software can be
interrupted during the send of this first byte. On a multiplexer
network, the individual computers must respond within
approximately 50 microseconds after the READY line goes high, or
the multiplexer will switch to the next slot. (It will first
wait for a while after dropping the READY line -- a period
controlled by the second polling parameter.) If your driver is
interrupted after it detects that the READY line is high, and

Corvus Systems 147

Mass Storage Systems GTI Flat cable driver

before it sends the first byte, then by the time it is ready to

send the first byte, the multiplexer may have already switched to
the next slot.

This problem can be avoided by turning off the interrupt system
during part of the send loop to insure that if your driver finds
the drive ready, it can send out the byte without being
interrupted. See the sample 8086 driver in Appendix E for an
example of this sequence.

Corvus Systems 148

Mass Storage Systems GTI Sending Disk Commands

S8ENDING OTHER

DISBK COMMANDS 4

The Corvus mass storage devices support more operations than just
read and write. Semaphores, pipes, mirror operations, etc., can
all be invoked by application programs. This chapter discusses
how these commands may be used by application programs.

This chapter merely describes how to send the command bytes and
receive the results. The functionality of the commands is
described in other chapters (Chapter 5: Semaphores, Chapter 6:
Pipes).

The interface for sending a drive command generally consists of
specifying the number of bytes to send, the maximum number of
bytes expected to be received, and 2 buffers, one which contains
the bytes to be sent and one which will contain the results.

PROCEDURE SendCom(SendLen: INTEGER; VAR Recvlen: INTEGER:;
VAR SendBuf, RecvBuf: Dbuf);

After a call to SendCom, Recvlen contains the number of bytes
actually received, and RecvBuf contains the data.

For example, the code to send a semaphore lock command would look
something like this (the semaphore name is 'S ')

TYPE Dbuf: PACKED ARRAY [1..530)] OF 0..255;

VAR SendBuf, RecvBuf: Dbuf;
SendLen, Recvlen: INTEGER;

BEGIN

Sendlen := 10; { semaphore lock sends 10 bytes)

Recvlen := 530; (the size of RecvBuf)

SendBuf[l] := 11; SendBuf[2] := 1; (command code and subop)
SendBuf[3])] := ORD('S'); (semaphore name)
SendBuf[4] := ORD(' '):

SendBuf[10] := ORD(' ');

SendCom(SendlLen, Recvlen, SendBuf, RecvBuf):;

Corvus Systems 149

Mass Storage Systems GTI Sending Disk Commands

{ now check resuls)
IF RecvBuf[l] > 127 THEN (disk error ...) ELSE _
IF RecvBuf[2] = 0 THEN {(semaphore successfully locked) -ELSE
CASE RecvBuf[2] OF { couldn't lock, report error)
128: { already locked)
253: (table full)
254: (table read-write error)
END;

END.

Corvus provides a version of the SendCom procedure for each
operating system it supports. The next sections describe each
implementation in detail. Often, there are several layers of
interface, and the application developer can pick the level of
interface desired. Generally, the highest level interface is the
most flexible, but also the most costly in terms of execution
time and memory space required.

Of course, you as a software developer may choose to ignore any
software provided by Corvus, and develop your own interface which
talks directly to the transporter or flat cable card. The
flowcharts given in Chapter 3, "Disk Drivers," should be helpful in
this case. 1If you do choose to develop your own interface, you
must consider the impact on other software developers. As
mentioned in the section on Omninet in Chapter 3, the receipt of
unknown messages and the use of buffer space in buffere
transporters must be considered. :

The same example, a semaphore lock, is used in each description
below, but the procedures described may be used tc send any disk
command.

The implementation of the SendCom procedure takes one of two
forms: 1) the SendCom procedure calls an entry point in the disk
driver to do the actual send of the command, or 2) the SendCom
procedure is a stand-alone procedure, which does not require the
disk driver to be present.

The advantages and disadvantages of form 1, where the SendCom
procedure calls the driver, are summarized below:

Advantages: the send-receive need only be coded once, and it
becomes part of the operating system. Application programs
then do not have to change when they are ported from one
hardware environment to another.

Disadvantages: <the application program cannot run unless the

driver is installed. Drivers become part of the resident
operating system, and therefore occupy memory, leaving less

Corvus Systems 150

Mass Storage Systems GTI Sending Disk Commands

memory available to those applications which do not use
the feature.

The advantages and disadvantages of form 2, where the SendCom
procedure is a stand-alone procedure, are summarized below:

Advantages: the driver need not be installed, leaving more
memory available to the application.

Disadvantages: each application which uses the interface must
be relinked if the interface changes, either because of
bugs or hardware changes.

Most of the early Corvus implementations, including Apple (R)
Constellation I and CP/M 80 (TM), use form 2, a stand-alone procedure,
to send drive commands. The later implementations, including

MS (TM)-DOS Constellation II, use form 1.

In most of the Corvus implementations, the procedure SendCom is

usually coded as “two separate procedures: CDSEND and CDRECV (the
reason for this is historical). A call to CDSEND must always be
followed immediately by a call to CDRECV. Also, in most of the
Corvus implementations, the SendBuf and RecvBuf are the same
?uffer; i.e., the results of a command overlay the command
tself.

Corvus Concept operating system:

Direct communication with the Corvus drive is handled by the two
procedures CDSEND and CDRECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the unit CCDRVIO, which is in the
library C2LIB. C2LIB is included in the standard release of
Concept software. ...

Please refer to the Pascal Library User Guide (Corvus P/N

7100-04978). You will need to look at Chapter 14, "Corvus Disk
Interface Unit" (ccDRVIO).

CDSEND and CDRECV each have two parameters described by the
following type declarations, which appear in the interface
section of unit ccDrvio:

const SndRcvMax = 530;

type CDaddr = RECORD
SlotNo: byte;
Kind: SlotTypes:;
NetNo: byte;
Stationno: byte;
Driveno: byte;
BlkNo: LONGINT;

slot number)

omninetDisk or LocalDisk (defined in CCDefn)
unused }

Omninet server address)

drive number)

block number)

P~ i o - i~

Corvus Systems 151

Mass Storage Systems GTI Sending Disk Commands

type SndRcvStr= RECORD
sln: INTEGER; { length of command to be sent)
rln: INTEGER; { maximum number of bytes to be returned)
CASE INTEGER OF
2: (c: PACKED ARRAY [l..SndRcvMax] OF CHAR);
1: (b: ARRAY [l..SndRcvMax] OF byte):
END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit ccDRVIO must be initialized by calling the procedure
ccDrvIoInit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
sequence:

USES {(CCLIB) CCDefn,
{C2LIB) ccDrvio;

VAR xcv: SndRcvStr;
Netl.oc: CDAddAr:;
X INTEGER;

BEGIN
ccDrvIolInit; { initialize the unit)
InitSlot(Netloc); { sets NetLoc to boot device)

Xcv.sln := 10; xcv.rln := 530;
xXcv.b[l] := 11; xcv.b[2] := 1; {(semaphore lock command)
Xcv.c[3] := 'S';.XxXcv.c[4] = ' ';

xXcv.c[1l0] = ' ',

CDSEND(NetLoc, xcv):
CDRECV (NetLoc, xcv):

IF xcv.b[l] < O THEN { report disk error) ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked)} ELSE
BEGIN
X = xcv.b[2)];
IF x < O THEN x := x+256;
CASE x OF
128: (already locked)
253: (table full)
254: { error on table read-write)
END;
END;

Corvus Systems 152

Mass Storage Systems GTI Sending Disk Commands

The procedures CDSEND and CDRECV are found in the unit ccDrvio in
the file C2LIB. This unit has several other procedures in it, so
the unit is rather large. If space is a problem, you can
interface directly to the SlotlO driver as described below.

Commands are sent using the UNITWRITE procedure. Results are
received with the UNITREAD procedure. The parameters are
described below:

UNITWRITE (unitno, the SlotIO driver)

buffer, the command to be sent)
length, length of the command)
0, not used)

control); control contains the slot and
server # where the command is
to be sent; msb is server # and
1sb is slot #. server # is 0O
for slots 1 to 4 (local disk))

UNITREAD (unitno, the SlotIO driver)

P e g, g g PR g g gy g g g i

buffer, where the results will be stored)
length, maximum length to be received)

0, not used)

control):; same as on UNITWRITE)

UNITWRITE and UNITREAD should always be used in pairs; i.e., a
UNITWRITE should be followed immediately by a UNITREAD. The
function IORESULT should be called following each call to
UNITWRITE or UNITREAD to check for an error. The following
errors may be returned:

Value Meaning
0 no error
4 disk error (disk result > 7Fh)

The unit number to which the SlotIO driver is assigned may be
obtajned by calling the EXTERNAL procedure OSS1tDv.

For instance, the following code fragment sends a semaphore lock
command:

VAR c: PACKED ARRAY [1..530] OF CHAR; { the longest command
{ is 530 bytes)

FUNCTION OSS1tDv: EXTERNAL;
BEGIN

c[1] := CHR(11):
c[2) := CHR(1l):
c[3) = 'S!';

semaphore command)
lock)
semaphore name)}

-~~~

Corvus Systems 153

Mass Storage Systems GTI Sending Disk Commands

c[10] = ' ';
UNITWRITE(OSSlotDv, ¢, 10, 0, $105); { send command to)

ior := IORESULT;
IF ior = 0 THEN BEGIN
UNITREAD(OSSlotDv, c, 530, 0, $105); { get results)
ior := IORESULT:;
END;
IF ior=0 THEN {(all ok} ELSE {report errorj}:;
CASE ORD(c[2]) OF
0: (semaphore locked successfully }
128: { semaphore was already locked)
253: (semaphore table full)}
254: { error reading-writing semaphore table)}
END;

M8-DOS 1.X, 2.Xx Constellation II:

For MS-DOS, direct communication with the Corvus drive is handled
by the two procedures CDSEND and CDRECV. Any command described
in the Chapter 1 may be sent to the Corvus drive using these
routines.

The source and object files for the routines described here are
available on diskette as part of the Software Developer's Kit for
MS-DOS. See Appendix F for details. Appendix E contains a

listing of the flat cable versions of the CDSEND and CDRECV
routines.

The procedures CDSEND and CDRECV are written in machine language
and are assembled using the Microsoft Assembler. Because there
is no standard or dominant language for MS-DOS applications
developers, we have chosen to give the examples here in the
language used by Corvus for MS-DOS applications, MS Pascal.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
interfaces are provided for MS Pascal and compiled Basic. If you
are using some other language, you will have to make the

appropriate changes to the source for DRIVEC2.ASM and reassemble
it.

The procedures CDSEND and CDRECV are contained in the module
DRIVEC2.0BJ. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration:

Corvus Systems 154

Mass Storage Systems GTI Sending Disk Commands

type Longstring= RECORD

length: INTEGER;

CASE INTEGER OF
{ n should be equal to the length of the longest)
{ command you intend to send or receive }
l: (int: PACKED ARRAY [1l..n] OF 0..255);
2: (str: PACKED ARRAY [l..n] OF CHAR):;

END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

PROCEDURE CDSEND(xcv:longstring); EXTERN;
PROCEDURE CDRECV(xcv:longstring): EXTERN;
FUNCTION INITIO: INTEGER; EXTERN;

VAR xcv¢ longstring:;

BEGIN

IF INITIO <> O THEN (error...); { initialize the unit)
xcv.length := 10;

xcv.int[1l] := 11; xcv.int[2] := 1; (semaphore lock command)
xcv.str[(3] := 's';

Xcv.s8tr[4] = ' !;

xcv.str{10] := ¢ !

“e

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1)>127 THEN (report disk error } ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked)} ELSE
BEGIN
CASE xcv.int[2] OF
128: .{ already locked)
253: (table full)}
254: (error on table read-write)
END;
END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

function SETSRVR(srvr: INTEGER): INTEGER; EXTERNAL;

Corvus Systems 155

Mass Storage Systems GTI Sending Disk Commands

The following function call sets the server to server 3:

IF INITIO <> 0 THEN (error ...)
b := SETSRVR(3):

The function SETSRVR returns the boot server address, and ignores
the parameter if it is greater than 255, or negative. Thus, you
can also use this function to find out the boot server address:

IF INITIO <> 0 THEN (error...)
b := SETSRVR(-1):
{ now b contains the Omninet address of the boot server)}

CP/M-80 and CP/M-86 Constellation II:

For CP/M-80 and CP/M-86 (TM), direct communication with the Corvus
drive is handled by the two procedures SEND and RECV. Any
command described in the Chapter 1 may be sent to the Corvus
drive using these routines.

The source and object files for the routines described here are
available on diskette as part of the Software Developer's Kit for
Constellation II, CP/M-80 or CP/M-86. See Appendix F for
details.

The procedures SEND and RECV are written in machine language and
are assembled using the Digital Research assembler. Because
there is no standard or dominant language for CP/M applications
developers, we have chosen to give the examples here in the
language used by Corvus for CP/M applications, Pascal MT+.
Unfortunately, each language uses a slightly different parameter
passing mechanism. -On.-the developer's diskette mentioned above,
an interface is provided for Pascal MT+. If you are using some
other language, you will have to make the appropriate changes to
the source for CPMIO.ASM or CPMIO86.A86 and reassemble it.

The procedures SEND and RECV are contained in the module
CPMIO.ERL for CP/M-80 and in CPMIO86.R86 for CP/M-86. The
routines in this module must be initialized by calling the
function INITIO BEFORE calling any other procedures in the
module. INITIO returns the address of the Corvus driver if it is
successful, otherwise it returns 0. INITIO should be called only
once, at the beginning of your program.

SEND and RECV each have one parameter described by the following
type declaration:

type longstring= RECORD

length: INTEGER;
CASE INTEGER OF

Corvus Systems 156

Mass Storage Systems GTI Sending Disk cOmmands‘

{ n should be equal to the length of the longest)
{ command you intend to send or receive }
l: (int: PACKED ARRAY [l..n] OF 0..255);

¢ (str: PACKED ARRAY [l..n] OF CHAR);

END;

Calls to these procedures occur in pairs. That is, a call to
SEND is followed immediately by a call to RECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

EXTERNAL PROCEDURE SEND(xcv:longstring):
EXTERNAL PROCEDURE CDRECV(xcv:longstring);
EXTERNAL FUNCTION INITIO: INTEGER;

VAR xcv: longstring:
BEGIN
IF INITIO = O THEN (error...): { initialize the unit)

Xcv.length := 10;

xcv.int[1l] := 11; xcv.int[2) := 1; { semaphore lock command }
Xcv.str[(3] = 'S
XCcv.s8tr[4] := ' !

xcv.str[10] := ' !;

we wo

SEND(xcv) ;
RECV (xcv) ;

IF xcv.int[1]>127 THEN (report disk error) ELSE
IF xcv.int[2]=0 THEN {(semaphore successfully locked) ELSE
BEGIN
CASE xcv.int[2] OF
128: ({ already locked)
253: (table full)
254: (error on table read-write)
END;
END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:
EXTERNAL function SETSRVR(srvr: INTEGER): INTEGER;

The following function call sets the server to server 3:

Corvus Systems 157

Mass Storage Systems GTI Sending Disk Commands

IF INITIO = 0 THEN (error ... }
b := SETSRVR(3):;

The function SETSRVR returns the boot server address and ignores
the parameter, if the parameter is greater than 255, or negative.
Thus, you can also use this function to find out the boot server
address:

IF INITIO = 0 THEN { error... }
b := SETSRVR(-1):;
{ now b contains the Omninet address of the boot server)

Apple DOS Constellation II:

Please read the section on Apple DOS Constellation I first.
Constellation II is not supported on multiplexer networks. If
you are using an Omninet network, you should assemble and use the
code given below in place of OMNIBCI.OBJ, because the transporter
RAM code is different for Constellation II than it was for
Constellation I.

For Apple Constellation II, direct communication with the Corvus
drive is handled by calling an entry point in the Corvus driver.
The Corvus driver must have been previously loaded into the RAM
on the transporter card; it is loaded by the boot process.

The driver is called by activating the slot containing the card,
and then executing a JSR to location C80Bh. The next 8 bytes
following the JSR instruction contain the parameters to the
driver:

Bytes Meaning
0 and 1 Address of command buffer.

2 and 3 Length of command.
4 and 5 Address of result buffer.
6 and 7 Maximum length of result.

Here is a listing of OMNIBCI.OBJ for Constellation II:

+ABSOLUTE

. PROC OMNIBCI
LEN .EQU 0300
BUF .EQU 0302

START .ORG 8A00

LDA LEN ; move command length
STA Cmdlen

Corvus Systens 158

Mass Storage Systems GTI Sending Disk Commands

LDA LEN+1

STA Cmdlen+l

LDA BUF ; move command address

STA CmdBuf)

STA RsltBuf : make result address same as command
LDA BUF+1 H address

STA CmdBuf+l
STA RsltBuf+l

LDY #28. ; make result length = 530
STY Rsltlen
LDY #2

STY Rsltlen+l

JSR GORAM { RAM code will return to next instruction
LDA Rsltlen ¢ return result length

STA LEN

LDA RsltLlen+l

STA LEN+1

RTS s return to caller

GoRAM BIT OCFFF
BIT 0C600
JSR 0C80B

enable Omninet RAM
assumes slot 6
no return necessary

«e we we

CmdBuf .WORD
CmdLen .WORD
RsltBuf.WORD
RsltLen.WORD

address of command
length of command
address of result
maximum length of result

0000
«s we we we

.END

If you use this version of OMNIBCI.OBJ, your programs that were
coded using the OMNIBCI.OBJ provided by Corvus for Constellation
I need not be modified. for Constellation II.

Version IV p-system and Apple Pascal Constellation II:

Direct communication with the Corvus drive is handled by the two
procedures CDSEND and CDRECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the file CORVUS.LIBRARY, which is
part of the Software Developer's Kit available for Version IV
p-system and Apple Pascal 1.2. See Appendix F for details.

CLSEND and CDRECV are contained in unit UCDRVIO.
CDSEND and CDRECV each have two parameters described by the
following type declarations (these declarations appear in the
interface section of unit UCDrvio):

const SndRcvMax = 530;

Corvus Systems 159

Mass Storage Systems GTI Sending Disk Commands

type CDhaddr = RECORD
SlotNo: Dbyte;
Kind: SlotTypes:;
NetNo: byte;
Stationno: byte;
Driveno: byte:;
BlkNo: LONGINT;

slot number)

omninetDisk or LocalDisk (defined in cCDefn)
unused }

Omninet server address)}

drive number)

block number)}

Poon X ane X amn N atn Xane X ase)

type SndRcvStr= RECORD
sln: INTEGER; { length of command to be sent)}
rln: INTEGER; { maximum number of bytes to be returned)
CASE INTEGER OF
2: (c: PACKED ARRAY [1l..SndRcvMax] OF CHAR):;
1l: (b: PACKED ARRAY [1l..SndRcvMax] OF byte):;
END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally-used for both calls.

The unit UCDRVIO must be initialized by calling the procedure
ccDrvIoInit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
sequence:

USES (CORVUS.LIBRARY)} UCDefn, UCDRVIO:;

VAR xcv: SndRcvStr;
Netloc: CDAddr:
x: .INTEGER;

BEGIN
ccDrvIoInit; { initialize the unit)
InitSlot(Netloc): { sets NetLoc to boot device)

xcv.sln := 10; xcv.rln := 530;
xcv.b([l] := 11; xcv.b[2] := 1; { semaphore lock command }
xcv.c[3] := 'S'; xcv.c[4] ="' ';

Xcv.c[10]) = ' ¢,

CDSEND (Netloc, xcv);
CDRECV (NetLoc, xcv);

IF xcv.b[1l] > 127 THEN { report disk error) ELSE

IF xcv.b[2] = O THEN { semaphore successfully locked) ELSE
BEGIN
X := xcv.b[2];

Corvus Systems 160

Mass Storage Systems GTI Sending Disk Commands

CASE x OF
128: (already locked)
253: ({ table full)

254: (error on table read-write)
END;
END;

The procedures CDSEND and CDRECV are found in the unit UCDrvio in
the file CORVUS.LIBRARY. This unit has several other procedures
in it, so the unit is rather large. 1If space is a problem, you
can interface directly to the machine language routines contained
in the module DRVSTF.CODE. The routines are:

PROCEDURE drvSend (VAR s:sndRcvStr); EXTERNAL
PROCEDURE drvRecVv (VAR s:sndRcvStr); EXTERNAL
Uses PASCAL global variable DISK_SERVER

FUNCTION OSactSlt:INTEGER; EXTERNAL

Returns 1 if we have booted up under CONSTELLATION I1I,
0 if we have not.

FUNCTION OSS1ltType(slot : INTEGER) : INTEGER; EXTERNAL;
For valid slots, return the interface card type,
l=flat cable 2=Omninet; for all other slots
returns O0=no disk

FUNCTION OSactSrv : INTEGER;
Return the active disk server. This procedure assumes
that the driver is attached and we have booted up under
CONSTELLATION II. No checking is done

FUNCTION XPORTER_OK : BOOLEAN;
Returns true if transporter is ok, false if transporter
with duplicate address is on the network. Returns true
if flatCable interface is present.

FUNCTION FIND ANY SERVER(VAR server : INTEGER): BOOLEAN;
Returns true if any disk server is found on the network,
and sets the variable server to the address of the disk
server. Returns false if no disk server replys.

Returns true with a server of zero if the interface card
is flat cable.

Commands are sent using the drvSend procedure. Results are
received with the drvRecv procedure.

Two global variables must also be declared: active slot and
disk_server. These must be set prior to calling drv_senad.

For instance, the following code fragment sends a semaphore lock
command :

Corvus Systems 161

Mass Storage Systems GTI Sending Disk Commands

VAR active_slot: INTEGER;
disk_server: INTEGER;
omni_error: INTEGER;

xcv: SndRcvStr;

BEGIN
active_slot := OSactSlt; Disk_server := OSActSrv;

xcv.s8ln = 10; xcv.rln = 530;
xcv.b(1l] := 11; xcv.b[2] := 1; { semaphore lock command }
xcv.c[3] = 'S§'; xcv.c[4] = ' ';

xcv.c[l0] = ' !;

drv_send(xcv) ;
drv_recv(xcv) ;

IF xcv.b[1l] > 127 THEN (report disk error)} ELSE

IF xcv.b{2]) = 0 THEN {(semaphore successfully locked) ELSE
BEGIN

X ¢= xcv.b[2];
CASE x OF
128: (already locked)
253: { table full)
254: (error on table read-write)
END;
END;

Apple Pascal Constellation I:

In Pascal, direct communication with the Corvus drive is handled
by the two procedures-CDSEND and CDRECV. Any command described
in Chapter 1 may be sent to the Corvus drive using these
routines.

These procedures are contained in the unit Driveio of
CORVUS.LIBRARY. This unit must be initialized by calling the

procedure Driveioinit BEFORE calling any other procedures in the
unit.

Driveioinit should only be called once, at the beginning of
your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration (which appears in the interface
section of Driveio):

type LONGSTR= RECORD
length: INTEGER;
CASE INTEGER OF
{ n should be equal to the length of the longest)

Corvus. Systems 162

Mass Storage Systems GTI Sending Disk Commands

{ command you intend to send or receive)
1: (int: PACKED ARRAY [1l..n] OF 0..255);
: (byt: PACKED ARRAY (1..n] OF CHAR);
END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. - The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

USES Driveio;

VAR xcv: LONGSTR;

BEGIN

Driveioinit; { initialize the unit)
xcv.length := 10;

xcv.int[1l] := 11; xcv.int[2]) := 1; { semaphore lock command)

XCv.byt[3] = 'S
Xcv.byt[4] = ' ¢

we weo

Xcv.byt[10] := ' !;

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN { report disk error) ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked)} ELSE
BEGIN
CASE xcv.int[2] OF
128: { already locked)
253: (table full)
254: (error on table read-write)
END;
END;

The procedures CDSEND and CDRECV are found in the unit DRIVEIO in
the file CORVUS.LIBRARY. These procedures are independent of
whether you are using flat cable or Omninet. The price you pay
for this independence is that the unit DRIVEIO is fairly large.
You can interface directly to the assembly language drivers for
flat cable or Omninet with the routines in the unit OMNISEND,
also in the file CORVUS.LIBRARY. The interface to these assembly
language routines is described next.

Use drv_send and drv_recv for flat cable interface. Active_slot

must be a global variable.

Corvus Systems 163

Mass Storage Systems GTI Sending Disk Commands

Use omni_send and omni_recv for Omninet interface. Prior to the
first use of these routines in a program, you should use the code
shown below to get the disk server address, unless you make the
assumption that the disk server has a fixed address. Disk_server
and active slot must be global variables.

In either case, the Corvus interface card may be used in any
slot. The variable active slot is set to the slot number that
the card is plugged into. But remember that the interface card
must be in slot 6 for normal operation.

CONST
longstr_max = 1030;
broadcast_add = 255;

TYPE
byte = 0..255;
LONGSTR= RECORD
length: INTEGER:;
CASE INTEGER OF --~—-
{ n should be equal to the length of the longest }
{ command you intend to send or receive }
1: (int: PACKED ARRAY [l..n] OF byte);
2: (byt: PACKED ARRAY [l..n] OF CHAR);
END;

valid_slot = 1..7;

VAR
active_slot : valid_slot; (* used by assembler routines to
determine io location ¥*)
disk_server : byte; (* used by assembler routines *)
omni_error : integer:; (* used by asm - returns timeout status *)

PROCEDURE drv_send (VAR st : longstr); EXTERNAL;

PROCEDURE drv recv(VAR st : longstr); EXTERNAL:

PROCEDURE omni_send (VAR st : longstr); EXTERNAL;

PROCEDURE omni_recv (VAR st); EXTERNAL;

(* did not specify type so init portion could send a dummy *)

The following initialization is required for omni_send and omni_recv:
disk_server := broadcast_add;
omnirecv(dummy); (* looks for disk server %)

IF disk_server = broadcast_add THEN (* omnirecv sets disk_server *)
error;

Corvus Systems 164

Mass Storage Systems GTI Sending Disk Commands

Apple DOS Constellation I:

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

Each routine is a binary file which must be BLOADed into memory
before being called. BCI.OBJ must be loaded at location 300h,
while OMNIBCI.OBJ must be loaded at location BAOOh. Neither
routine is relocatable. BCI.OBJ ends at location 386h, while
OMNIBCI.OBJ ends at location 9044h. OMNIBCI.OBJ is much longer
because it includes buffer space for Omninet messages.

A drive command is poked into memory, and the address and length
of the command are passed to BCI (or OMNIBCI) by poking the
address into location 302h and 303h, and poking the length of the
command into locations 300h and 30l1h. BCI (or OMNIBCI) is then
CALLed. Upon return, the length of the result can be peeked from
location 300h and 301h, and the result itself has been written
into the space pointed-to by the address parameter.

See the DIAGNOSTIC program, lines 10000-10007 for an example of
how to load BCI (or OMNIBCI). See lines 15000-15110 for an
example of how to call BCI (or OMNIBCI).

BCI does not use the ROM on the Corvus interface card. OMNIBCI
does use the RAM on the transporter card. This RAM is loaded
from a reserved area on the Corvus drive at boot time. If you
want to use OMNIBCI without booting from the Corvus drive, you
must execute the code that loads the RAM. See the BSYSGEN
program, lines 20000-20060 for an example of how to initialize
OMNIBCI.

A listing of BCI.OBJ is included in appendix E.

CP/M 80 Constellation I:
You may order the Software Developer's Kit for your particular

machine for examples of how to send commands using the flat cable
interface. Version available are listed in Appendix F.

Corvus Systems 165

Mass Storage Systems GTI Sending Disk Commands

This page intentionally left blank.

Corvus Systems 166

Mass Storage Systems GTI Using Semaphores

|
SBEMAPHORES | 5

I

I

This chapter gives examples of how the semaphores feature of the
Corvus mass storage systems may be used.

Semaphores can be used to control access to any shared resource
on the network. Most often, semaphores are used to coordinate
access to shared files. You should understand that semaphores
merely provide the capability to access shared files; it is you
who must ensure that your programs use this capability.

Programs written for single-user access may not be used to access
shared files; they must be modified to include semaphore calls.

User libraries that implement semaphore calls are supplied with
most of the versions of Corvus utilities. A typical interface
consists of two function calls, each with one parameter
specifying the name of the semaphore to be accessed:

function LOCK (SEMA4: string): integer:;

function UNLOCK (SEMA4: string): integer:;

Each function returns a value which indicates the result of the
operation. The values are as follows:

0 Semaphore was not previously locked. For LOCK,
this means that the semaphore has now been locked
successfully.

128 Semaphore was previously locked. For LOCK, this

means that the semaphore could not be locked by
this call. For UNLOCK, this means that the
semaphore is now unlocked.

<0 Some error occurred, and the semaphore could not
be locked. Specifically, the values returned are

-253 Semaphore table is full.
-254 Error reading/writing semaphore table.

-255 Unknown error.

Corvus Systems 167

Mass Storage Systems GTI Using Semaphores

Thus, a successful LOCK call returns a value of 0. A successful
UNLOCK call returns 0 or 128.

As mentioned above, semaphores can be used to control access to
any shared resource on the network. Let's look in detail at two
common uses for semaphores: shared volumes and shared files.

Volume sharing implies that several users will be modifying
different files in the same volume. To coordinate such access,
some sort of volume locking scheme must be used. File sharing
implies that several users will be modifying a particular file.
This access requires a file locking scheme.

VOLUME S8HARING

The problems associated with volume sharing include directory
update and dynamic file allocation. Both of these problems can
be solved by the wvolume- locking scheme described below. First,
let's look at what happens if you try to do volume sharing
without some sort of locking scheme.

Most systems keep a copy of the directory in memory. Whenever a
new file is opened, an entry is made in the memory copy of the
directory, but this copy is not necessarily written to disk right
away. Thus, if two users open two different files at
approximately the same time, the memory copies of the directory
will differ. Eventually, both copies will be written back to
disk, and one user will lose the file just opened.

Systems which use dynamic file allocation, such as MS-DOS and
CP/M, keep a memory image of the disk space allocated. Whenever
a new file is opened, or a new record is written past the current
end of file, the file.system searches its file allocation table
for free space on the disk. Enough free space is allocated to
the file to contain up to and including the new record, and a new
end of file mark is written. The file allocation table is
written back to the disk only when absolutely necessary, in order
to minimize disk I/0.

Let's look at what happens when two users are creating files on
the same volume at the same time. Each user has a current copy
of the file allocation table in memory; the operating system
searches the memory copy of the file allocation table for free
space, and allocates the same disk blocks to two different files.
Everytime one user updates the data in that disk block, the data
for the other user is destroyed. This can result in many
confusing error messages and incomprehensible data.

Many application writers, for this reason, preallocate any files

their application requires. This operation consists of opening a
file, writing to the last record, and then flushing the

Corvus Systems 168

Mass Storage Systems GTI Using Semaphores

allocation map. Then the application does not have to worry
about further allocation, until the file fills up. Most data
bases are preallocated anyway, as this makes it easier for the
application to manage the data base.

VOLUME LOCKING

Unlike some other network systems, Corvus software does not
define a volume type of shared access. Instead, Corvus software
defines volume access in terms of read-write access or read-only
access. If more than one user has read-write access to the same
volume, then that volume is a shared volume, and access to it
must be protected by using semaphores.

When two users wish to access the same volume, they must
coordinate that access in some way. One way to do this is with
volume locking. 1In the scheme described here, it is assumed that
each user has the volume in question mounted with read-only
access.

Users must indicate when they are ready to write to the volume by
executing a LOCK program, and specifying the name of the volume
to be locked. The LOCK program will ensure that no other user
currently has write access to the volume, and then grant the user
write access.

How does the program know if any user currently has write access
to the volume in question? This example assumes that if a
certain file, called LOCKED, exists in the volume, then the
volume is currently locked by some user. Furthermore, the name
of the user who locked the volume is contained in the file
LOCKED.

The steps the LOCK program must take are listed below:

1) Try to open the file LOCKED. If found, report that
the volume is currently locked, and exit.

2) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

3) Create a file called LOCKED in the volume, and write
the user's name into it.

Thus, if a user executes the LOCK program after the volume is
locked, the user receives an error message saying that the volume
is already locked. Let's look at what happens, however, if the
volume is not locked, and two users happen to execute the LOCK
program at the same time.

Corvus Systens 169

Mass Storage Systems GTI Using Semaphores

User 1 User 2

open file LOCKED open file LOCKED

not found, so change not found, so change
access to read-write access to read-write

create file LOCKED, create file LOCKED,
write user name write user name

As you can see, both users think that the volume has been
successfully locked, and both have write access to the volume.
This is NOT supposed to happen. While the likelihood of two
users executing the program at the same time is small, it still
has to be prevented. The only way to prevent it is to use
semaphores.

The reason that both users were able to lock the volume is that,
on a Corvus network, computers have no way to do a read followed
imhediately by a write. The computer may send the write command
immediately after the read, but some other computer may be

serviced in between the two operations. The semaphore operation
is the only way to do an indivisible write after read operation.

In our example, a semaphore called VOLLOCK is used to synchronize
access between the two users. The steps the LOCK program must do
are expanded to the following:

1) Lock the semaphore VPLLOCK. If it can't be locked,
wait in a loop, and try again.

2) Try to open the file LOCKED. If found, report that
the volume is currently locked, unlock the semaphore,
and exit.

3) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

4) Create a file called LOCKED in the volume, and write
the user's name into it. Flush file buffers and

$5) Unlock the semaphore VOLLOCK.

Now let's loock at what happens when two users execute the LOCK
program at the same time.

Corvus Systems 170

Mass Storage Systems GTI Using Semaphores

User 1 User 2
Lock semaphore Lock semaphore
VOLLOCK VOLLOCK
Semaphore successfully Semaphore already locked,
locked. wait in loop.
Open file LOCKED semaphore still locked...
Not found, so change semaphore still locked...
access to read-write
Create file LOCKED, semaphore still locked...
write user name
Unlock semaphore Semaphore successfully
locked.

Open file LOCKED.

Found, so cannot lock volune.
Print message, unlock
semaphore and exit.

As you can see, only one user is able to lock the volume at any
one time.

There are still some problems with the algorithm given above. On
file systems which do directory buffering, the program must force
the directory to be flushed to the disk after creating the file.
Some hints for this are given in the specific operating system
sections below. Also, an UNLOCK program must be provided so that
& user can release access to a volume. This program must perform
the following steps:

l) Delete the file LOCKED.
2) Change the user's access to read only.

Again, in certain file systems, the directory must be flushed
after deleting the file. In this case, no semaphore is lockeqd,
because, in order to delete the file, the user must already have
write access to the volume.

Other problems include a user forgetting to unlock a volume
before powering off. Now no one can write to the volume, since
it is locked and no one has write access to it. This problem can
be gotten round in part by making the LOCK program a little
smarter: if the user executing the LOCK program has the same name
as the user name in the file LOCKED, then grant the user
read-write access.

Corvus Systems 171

Mass Storage Systems GTI Using Semaphores

Note that the same semaphore name, VOLLOCK, is used, regardless
of which volume is being locked. Thus, if two users attempt to
lock different volumes at the same time, one user finds that the
semaphore is locked. This is generally not a problem, since the
length of time that the semaphore is locked should be very short:;
the second user should notice only a slight delay before the
program completes. Of course, the LOCK program could use the
name of the volume to be locked as the semaphore name.

In fact, the LOCK program could be made much simpler if the
following algorithm were used:

1) Lock a semaphore with the same name as the volume.
If the semaphore cannot be locked, report error and
exit.

2) Change user access to read-write.
The UNLOCK program has only 2 steps as well:
1) Change user access to read only.
2) Unlock the semaphore with the same name as the volume.

While this algorithm avoids the directory buffering problem
mentioned above, there are two disadvantages to it:

1) There is no way to tell who has the volume locked.

2) Since the semaphore may be locked for an extended
period of time, a network with many users could £fill
up the semaphore table.

FILE OR RECORD LOCKING

File or record locking is complicated by the file buffering
schemes used by most operating systems.

Most file systems have one or more file buffers. These buffers
are used to minimize disk overhead by keeping the most recently
accessed file blocks in memory. When the operating system
receives a file read or write call, it first checks its buffers
to see if the specified file block is already in memory; if it
is, then the I/0 is done to the memory image, rather than to the
disk. The buffer is flushed to the disk only when necessary,
usually when the buffer must be used for some other I/0
operation. Depending on the number and size of the buffers, it
may be quite a while before a file write is actually transferred
to the disk itself. Most operating systems provide a system call
that forces all buffers to be flushed to the disk.

Corvus Systems 172

Mass Storage Systems GTI Using Semaphores

Thus a write to a file does not actually get recorded on the disk
until some later time. In a network environment, this can mean
disaster for shared data bases, where many users are attempting
to read or write to a common file. Shared file applications must
therefore be coded very carefully; you must completely understand
the file buffering characteristics of the file system you are
using. The following description of record locking assumes that
you do understand your system's file buffering.

Basically, you must lock a semaphore on filling a file buffer,
and unlock the semaphore after the buffer has been flushed. Thus
the steps in updating a record are as follows:

l. Lock the semaphore.

2. Read the record (fill the file buffer)

3. Modify the data.

4. Flush the file buffer.

5. Unlock the semaphore.
The semaphore name associated with a given record must be
specified by your program. Your program must ensure that each
record that resides in the same disk block is assigned the same
semaphore name. For example, let's assume that your application
is called 2ZXY, and it deals with a file structure that has 32
records per disk block (that is, each file buffer can hold 32 of
your application's records). A good algorithm for assigning
semaphore names is shown below:

l. Compute record number DIV 32.

2. Embed this ASCII representation of this number in the
string 2XY00000.

For record 50, your application should lock semaphore ZXY00001.
For record 600, your application should lock semaphore ZXY00018.

Using this algorithm, each record which falls within the same

file buffer is assigned the same semaphore name. Let's look at
what happens when two users execute the program at the same time:

Corvus Systems 173

Mass Storage Systems GTI Using Semaphores

User 1 User 2

B;Q;Z; record 50: G;;;Q; record 52:

Lock semaphore 2ZXY00001l. Lock semaphore ZXYO00001l.

Semaphore successfully locked. Semaphore already locked,
wait in loop...

Read record 50. Semaphore still locked...

Make changes. Semaphore still locked...

Flush file buffer to disk. Semaphore still locked...

Unlock semaphore ZXY00001. Semaphore successfully locked.

Read record 52.

Make changes.

Flush file buffer to disk.
Unlock semaphore ZXY00001l.

Note that using this algorithm causes your program to use many
more than the 32 semaphore names provided by Corvus semaphores.
However, only a few semaphores will be locked at any one time, so
chances are you will never fill up the semaphore table. If you
are worried about this problem, you can set up your own
semaphore table, with semaphore names as long as you wish and
with as many semaphores as you wish. This table could reside in
a file or in a reserved disk block. Access to this user

semaphore table can be controlled with one Corvus semaphore in
the following manner:

1. Lock the Corvus semaphore SEMTAB.

2. Search the user semaphore table for the specified
semaphore name. If there, return the appropriate error.
If not there, add the semaphore and return the
appropriate return code.

3. Unlock the Corvus semaphore SEMTAB.

In the above discussion, we have tried to highlight some of the
problems involved in resource sharing, and how these problems can
be solved by proper use of semaphores. The next sections

describe the library routines provided for each operating system
supported by Corvus.

Corvus Systems 174

Mass Storage Systems GTI Using Semaphores

Corvus Concept Operating Bystem:

Please refer to the Pascal br User Guide (Corvus P/N
7100-04978). You need to look at Chapter 14, "Corvus Disk
Interface Unit" (ccDRVIO), and Chapter 16, "Corvus Disk Semaphores
Interface Unit" (ccSEMA4).

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the ccSEMA4
unit. The parameter NetLoc specifies which server will be used
for semaphore operations. Specifically, the following fields of
Netloc must be defined before calling CCSEMA4INIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either OmninetDisk or LocalDisk

Here is a portion of a LOCK program for Concept Pascal:

PROGRAM LOCK;
USES {(CCLIB)} CCDEFN,
{C2LIB} CCDRVIO, CCSEMA4;

VAR s: Semkey:
NetAddr: CDAddr: { CDAddr is declared in ccDrvio)
i, err: INTEGER;

BEGIN
ceDrviolInit; initialize unit ccDRVIO)
Initslot (NetAddr):; this procedure, from ccDrvio,
initializes slotno, stationno, and kind
fields to boot device. Sets driveno

to 1, all other fields to 0)

L Xate Yot Xase) —_—

ccSemad4Init (NetAddr); (initialize unit ccSEMA4)
cee { get volume name to be locked)

s := 'VOLLOCK';

i := 0;

REPEAT
i := i+1;
err := SemLock(s):;

UNTIL (err <> SemWasSet) (wait for semaphore to be not set }
OR (i > 32000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)

ces { lock volume)
{ closing the file causes the directory on disk to be updated)

Corvus Systems 175

Mass Storage Systems GTI Using Semaphores

err := SemUnlock(s):; { don't forget to unlock semaphore)}

END.

Version IV p-system and Apple Pascal constellation II:
Look at the interface sections for the following units:

UCDEFN, UCDRVIO, and UCSEMA4.
These units are found in library CORVUS.LIBRARY.
Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the UCSEMA4
unit. The parameter Netloc specifies which server will be used

for semaphore operations. Specifically, the following fields of
Netloc must be defined before calling CCSEMA4INIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either OmninetDisk or LocalDisk

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES (CORVUS.LIBRARY) UCDEFN, UCDRVIO, UCSEMA4;

VAR s: Semkey;
NetAddr: CDAdAr: (CDAddr is declared in ccDrvio)
i, err: INTEGER;

BEGIN
ccDrvioInit; initialize unit ccDRVIO)}
Initslot (NetAddr): this procedure, from ccDrvio,
initializes slotno, stationno, and kind
fields to boot device. Sets driveno

to 1, all other fields to 0)

P g g g~ _—

ccSema4Init(NetAddr); (initialize unit ccSEMA4)
e { get volume name to be locked)

e := 'VOLLOCK';

i:=0;

REPEAT
i = i+1;
err := SemlLock(s):

UNTIL (err <> SemWasSet) { wait for semaphore to be not set }
OR (i > 5000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)

Corvus Systenms 176

Mass Storage Systems GTI Using Semaphores

coe { lock volume)

{ closing the file causes the directory on disk to be updated)
err := SemUnlock(s): { don't forget to unlock semaphore)
END.

MS-DOS l.x and 2.x Constellation II:

The MS-DOS file system uses both file buffering and dynamic file
allocation. Refer to the DOS manual for information on managing
file buffers and file allocation tables.

The machine language interface described in Chapter 4 may be used
to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with MS Pascal and compiled
Basic.

A new set of routines provides direct semaphore calls. These
routines are written in machine language and are assembled using
the Microsoft Assembler. Interfacing to these routines from a
high level language may require changing the routines slightly.
This change is required because there is no standard parameter
passing mechanism in MS-DOS.

The routine declarations are as follows:
FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemStatus(VAR Name: STRING): INTEGER; EXTERN:

These routines are found in the file SEMAASM.OBJ. You must also
use the INITIO.and SETSRVR procedures from DRIVEC2.0BJ.

Here is a portion of a LOCK program:
PROGRAM Lock (INPUT,OUTPUT):;

CONST SemWasSet = 128;
SemNotSet = 0;

VAR s8: LSTRING(80):
err, i: INTEGER;

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION InitIO: INTEGER; EXTERN;

BEGIN
IF INITIO <> O THEN (error...)

Corvus Systems 177

Mass Storage Systems GTI Using Semaphores

cee { get volume name to be locked)}

8 := 'VOLLOCK';
i:=0;
REPEAT
s= 141
err := SemLock(s):
UNTIL (err <> SemWasSet) { wait for semaphore to be not set)
OR (i1 > 32000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)

.o { lock volume)}

{ flush directory to disk)

err := SemUnlock(s): { don't forget to unlock semaphore)
END.

CP/M-80 and CP/M-86 Constellation II:
The machine language interface described in Chapter 4 must be
used to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with Pascal MT+.
Apple Pascal Constellation I:
Look at the interface sections for the following units:

DRIVEIO and SEMA(4S.
These units are found in library CORVUS.LIBRARY.
Note that the procedure SEMA4INIT must be called prior to calling
any of the other procedures or functions in the SEMA4S unit. The
parameter is a BOOLEAN which should be set to FALSE. A TRUE
value results in some debugging statements being printed.
Here is a portion of a LOCK program:

PROGRAM LOCK;
USES (CORVUS.LIBRARY) DRIVEIO, SEMA4S;

VAR 8: Semkey:;
i, err: INTEGER;

BEGIN
Driveiolnit; { initialize unit Driveio)

Sema4Init (FALSE) ; { initialize unit SEMA4S)

Corvus Systems 178

Mass Storage Systems GTI Using Semaphores

cee { get volume name to be locked)

s := 'VOLLOCK';

i:=0;

REPEAT
i := i+1;
err := SemLock(s):;

UNTIL (err <> SemWasSet) (wait for semaphore to be not set)
OR (i > 5000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)

.o { lock volume)

{ closing the file causes the directory on disk to be updated)
err := SemUnlock(s): { don't forget to unlock semaphore)
END.

If you have limited memory available, you may wish to write your
own semaphore routines. See Chapter 4 for information on
interfacing directly to unit DriveIo.

Refer to the Apple Pascal Operating System Reference manual for
information on file buffering and allocation.

Apple DOS Constellation I/II:

Corvus provides two assembly language procedures ZBCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

The program SHARE on the distribution floppy for Constellation I
shows how to send samaphore commands using these routines.

Refer to the Apple DOS manual for information on file buffering
and allocation.

Corvus Systems 179

Mass Storage Systems GTI Using Semaphores

This page intentionally left blank.

Corvus Systens 180

Mass Storage Systems GTI Using Pipes

USING

PIPES 6

This chapter gives two examples of how the pipes features of the
Corvus mass storage systems may be used. The first example is a
spooling program; the second shows how messages can be exchanged
using pipes. The features of the Corvus-supplied Spool program
are also described.

User libraries that implement pipes calls are supplied with
several of the versions of Corvus utilities. A typical interface
consists of 9 functiorns. These are summarized below:

Function Description

PipeStatus Get status of pipes area
PipeOpRd4d Open pipe for reading
PipeOpWr Open pipe for writing
PipeRead Read data from pipe

PipeWwrite Write data to pipe

PipeClRd Close pipe for reading
PipeClWr Close pipe for writing
PipePurge Purge pipe

PipesInit Initialize pipes area on disk

Sample declarations of each function are listed below.
The DrvBlk data type used in these declarations is
TYPE DrvBlk = PACKED ARRAY 0..511 OF 0..255;

The negative error codes referred to in the declarations are
listed here:

Value Meaning
-8 Tried to read an empty pipe
-9 Pipe not opened
-10 Tried to write to a full pipe
-11 Pipe open error
-12 Pipe does not exist
=13 No room to open new pipe
-14 Invalid pipes command
-15 Pipes area not initialized
< =127 Disk error

Corvus Systems 181

Mass Storage Systems GTI Using Pipes

PipeStatus Function =====ccccccccc--- e L DL DD DD S bbbl
Pipesstatus uses the Pipe Status command to read the Pipe Name
table and the Pipe Pointer table. The definition of the
function is as follows:

FUNCTION PipeStatus(VAR Names, Ptrs: DrvBlk): INTEGER;

Parameter Data Type Description
Names DrvBlk Pipe Name Table
Ptrs DrvBlk Pipe Pointer Table

This function returns 0 if ok; a negative result indicates a
pipe error.
PipeOpRd function ====r--------eccccceccrereremmcoococosccononoo-

PipeOpRd uses the Pipe Open for Read command to open a pipe for
reading. The definition of this function is as follows:

FUNCTION PipeOpRA(PName: PNameStr): INTEGER;
Parameter Data Type Description
PName PNamestr Name of pipe to open
This function returns the pipe number if the specified pipe

exists, and can be opened. Otherwise, a negative error code is
returned.

PipeOpWr function ==---c-ccecccmemcemmcecccmcccrccccarccccscoceeoo-

PipeOpWr uses the Pipe Open for Write command to open a pipe for
writing. The definition of this function is as follows:

FUNCTION PipeOpWr(PName: PNameStr): INTEGER:;
Parameter Data Type Description
PName PNameStr Name of pipe to open

This function returns the pipe number if the pipe was

successfully opened. Otherwise, a negative error code is
returned.

Corvus Systems 182

Mass Storage Systens GTI Us.ng Pipes

PipeRead function ===eecccrccccancmncncccccccmccccccccmccceeeaa

‘PipeRead uses the Pipe Read command to-read a block of data from
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeRead(PNum: INTEGER; VAR Info: Drvlk): INTEGER;

Parameter Data Type Description
Pnum INTEGER Pipe number
Info DrvBlk Data read from pipe

This function returns the number of bytes read if the read is
successful. Otherwise, a negative error code is returned.
The number of bytes read should always be 512.

PipeWrite function -==--ecccccccecccnccccccnccnca- ,eemecceccecee—-

PipeWrite uses the Pipe Write command to write a block of data to
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeWrite(PNum, Wlen: INTEGER;
VAR Info: Drvlk): INTEGER;

Parameter Data Type Description

Pnum INTEGER Pipe number

Wlen INTEGER Number of bytes to write (=512)
Info DrvBlk Data to be written

This function returns the number of bytes written if the write
is successful. Otherwise, a negative error code is returned.
The number of bytes to write should always be 512.

PipeClRd function ===-ceccccccccccccccccccccccccncccccnnccccceaa"

PipeClRd uses the Pipe Close command to close the pipe for
reading. The definition of this function is as follows:

FUNCTION PipeClRd(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum INTEGER Pipe number
This function returns 0 if the pipe was successfully closed.

Otherwise, a negative error code is returned. If the pipe is
empty, it is deleted.

Corvus Systems 183

Mass Storage Systems GTI Using Pipes

PipeClWr function =-===-c-cc-cccccccccccmrereomrmrocrocscocscocas

PipeClWr uses the Pipe Close command to close the pipe for
writing. The definition of this function is as follows:

FUNCTION PipeClWr(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum INTEGER Pipe number
This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. Once a pipe has
been closed for writing, no additional data can be written to it.
PipePurge function ====-cececcccccnccccccccccrccrcccccrerecaceoa—

PipePurge uses the Pipe Close command to purge the pipe. The
definition of this function is as follows:

FUNCTION PipePurge(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum INTEGER Pipe number
This function returns 0 if the pipe was successfully purged.
Otherwise, a negative error code is returned.

PipesInit function ====-eccccccccmccncccccnccncncccccrercecncman—-

PipesInit uses the Pipe Area Initialize command to initialize the
pipes area. The definition of this function is as follows:

FUNCTION PipesInit(Baddr, Bsize: INTEGER): INTEGER;
Parameter Data Type Pescription

Baddr INTEGER Pipes area starting block number
Bsize INTEGER Pipes area length, in blocks

This function returns 0 if the pipes area was successfully
initialized. Otherwise, a negative error code is returned. You
should use this function with caution, since calling this
function overwrites any data located within the area specified.
Thi pipes area must be allocated within the first 32k blocks of
drive 1.

Corvus Systems 184

Mass Storage Systems GTI Using Pipes

A SIMPLE SBPOOLER

A spool program can be used to control access to a shared printer
on a network. One computer is used as a despooler, and has the
printer attached to it. It is running a despool program, which
is looping, looking for pipes with the name PRINTER to open for
read.

A second utility program, called the spooler, can be run on any
other computer on the network. This program asks for the name of
a file to be spooled, opens for write a pipe called PRINTER,
copies the file to the pipe, and then closes the pipe.

Despooler Spooler
{ look for a pipe to open }
REPEAT Open file f ...

P := PipeOpRd('PRINTER') P2 := PipeOpWr ('PRINTER'):;
UNTIL p>0; IF p2 < 0 THEN { error };

{ copy file to pipe)}
REPEAT

READBLOCK(f, buf);

e := PipeWrite(p2, buf):;
UNTIL EOF(f) OR (e<0);

e := PipeClWr(p2):
Close file f...

{Pipe 'PRINTER' opened.}

(copy data from pipe to)
{ printer)
REPEAT

e := PipeRead(p, buf):;

IF e > 0 THEN PRINT (buf):;
UNTIL e<O0;

e := PipeClRd(p):
{ the pipe has been purged)}

Of course, the real versions of the DESPOOL and SPOOL programs
will be much longer, as they must provide error handling and
recovery, as well as some text processing. See the description
of the Corvus spool program later in this chapter.

The pipes functions themselves handle the case where two users
execute the SPOOL program at the same time. Each user is
returned a unigque pipe number from the PipeOpWr function, which
is used in the calls to the other pipe functions. In fact, the
reason pipes are implemented is to provide exactly this

Corvus Systems 185

Mass Storage Systems GTI Using Pipes

capability: two users can access the pipes area at the same time,
and not worry about interfering with each other.

It is not possible to control the order in which pipes will be
despooled. Both the PipeOpWr and the PipeOpRd functions always
open the lowest numbered available pipe.

UBING PIPES TO SEND MESSAGES

One of the electronic mail packages available for the Corvus
network uses the pipes area for two functions: to send messages
between two computers on the network, and to synchronize access
to a shared volume. We will look at how the message passing is
accomplished.

The Mail Monitor package from Software Connections consists of
two programs: a Mail program which a user invokes in order to

send or receive mail, and a PostOffice program which is always
running on a dedicated computer. Several users can be running
the Mail program at the same time.

Messages between the Mail programs and the PostOffice are sent
via the pipes area. When the user is ready to receive mail, the
Mail program opens and writes the user number into a pipe called
MSG. The PostOffice sees the pipe, opens it, and reads the user
number contained in it. The PostOffice checks if any mail is
waiting for that user, and sends a message back by writing to a
pipe called USERnn, where nn is the user number contained in the
MSG pipe. The Mail program then opens the USERnn pipe to get the
reply. This process is demonstrated by the following program
fragments:

Corvus Systems 186

Mass Storage Systems GTI Using Pipes

Mail PostOffice
{ send message)} { wait for messages)
p t= PipeOpWr('MSG'); REPEAT
IF p<0 THEN (error) Pl := PipeOpRA('MSG');
message := 'USEROl'; UNTIL pl>0;

e := PipeWrite(p, 512, message):
IF e<0 THEN {error)
e := PipeClWr(p):

{ wait for reply)}
REPEAT (Pipe 'MSG' opened.)
p := PipeOpRA('USERO1l');
UNTIL p>0; read message }
¢= PipeRead(pl, msg):;
¢= PipeClRd(pl):
extract pname from)
message, and build reply)
1 := PipeOpWr (pname) ;
F pl < 0 THEN (error)
= PipeWrite(pl, 512, msg2):
¢= PipeClWr(pl):

OPOHT~~0D 0~

(Pipe 'USEROl' opened.) { go back to initial loop to)
{ read reply) { look for more messages)

e := PipeRead(p,msqg):;
e := PipeClRd(p):

Again, there is no code needed to handle the case when two users

execute the Mail program at the same time. The pipes functions
handle all sharing of the pipe area transparently.

THE CORVUS BPOOL PROGRAM

Corvus provides a spool program for most of the operating systems
supported. Corvus defines the following format for each pipe:

Corvus Systems 187

Mass Storage Systems GTI Using Pipes

Block 1: preamble block

Blocks 2-n: text or data blocks. If file type is text
(31h), then each block contains ASCII characters.
End-of-line is indicated by the two byte sequence ODh,
OAh (carriage return/line feed). The last block is
padded with ASCII NUL characters (00h).

If file type is data (30h), then each block contains
data, which is not looked at or changed by either the
spool program or the despooler.

The spool program opens the specified pipe for writing, and
creates and writes the preamble block. Then it reads from the
text file, converting end-of-line sequences from whatever is used
by the operating system to ODh, OAh. Most of the Corvus spool
programs also convert a specified new page sequence to the ASCII
form feed character (0Ch), and also chain text files as specified
by the include sequence.

The despooling function is performed either by a computer running
the despool program (or despool option of the Spool program), Or
by a Corvus Utility Server. In either case, the despool function
is going to read pipes and write their contents to a printer.

The despooler opens the pipe and reads the preamble block. It
writes the file name and user message on a header page. If the
preamble block indicates that the file is a data file, the
despooler merely writes the entire contents of each pipe block to
the printer (some versions will refuse to print a data file). 1If
the preamble block indicates that the file is a text file, then
the despooler must look at the contents of each pipe block. If
line feeds are off, it looks for all ODh, OAh byte pairs, and
either changes the OAh to a 00h or deletes the OAh byte. It also
handles paging by counting all 0Dh, OAh sequences. If the count
reaches the lines per page count specified, the despooler inserts
a form feed (0Ch) character. The despooler is also looking for

Corvus Systemns 188

Mass Storage Systems GTI Using Pipes

form feed characters embedded in the text, and resets to count to
zero when one is found. Some despoolers also implement a TAB
function.

The spool program can also be used to send a file to another
user. One user can spool a file to an agreed upon pipe name, and
another user can then despool from the specified pipe name into a
file. Both text files and data files may be exchanged. This
feature is especially useful for converting files from one file
system format to another.

The pipe name used is usually the name of the receiving user.

For example, a CP/M user can spool a file developed with WORDSTAR
to a pipe called JOAN. MS-DOS user JOAN can then despool the
file, and modify it using EASYWRITER.

Corvus Concept Operating S8ystem:

Please refer to the Pascal Library User Gujde (7100-04978). You
should look at Chapter 14, "Corvus Disk Interface Unit"

(ccDRVIO), and Chapter 15, Corvus "Disk Pipes Interface Unit"
(ccPIPES) .

Note that procedure CCPIPEINIT must be called prior to calling
any of the other procedures or functions in the ccPIPES unit.

The parameter Netloc specifies which server will be used for pipe
operations. Specifically, the following fields of Netloc must be
defined before calling CCPIPEINIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either OmninetDisk or LocalDisk

Here is a portion of a SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES (CCLIB) CCDEFN,
{C2LIB} CCDRVIO, CCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; (error code)
NetAddr: CDAddr:;

£f: FILE:
n: INTEGER;
buf: DrvBlk:
BEGIN
ccDrvioInit; { initialize unit ccDRVIO)

Initslot(NetAddr): (this procedure, from ccDrvio,

Corvus Systems 189

Mass Storage Systems GTI Using Pipes

{ initializes slotno, stationno, and kind
{ fields to boot device. Set driveno to
{ 1, all other fields to 0)

ccPipeInit(NetAddr); (initialize unit ccPipes)
(get file name and open it... }
pname := 'PRINTER'; { open pipe for writing)
pno := PipeOpWr(pname):
IF pno < 0 THEN (report error and exit... }:
WHILE NOT EOF(f) DO BEGIN
n := BLOCKREAD(£, 1, buf):
err := PipeWrite(pno, 512, buf);
IF err < 0 THEN {(report error, purge pipe, and exit... }:
END;
err := PipeClWr(pno):;
{ close file...)

END.

Version IV p-system and Apple Pascal Constellation II:
Look at the interface secitons for the following units:
UCDEFN, UCDRVIO, and UCPIPES

These units are found in library CORVUS.LIBRARY, which is
included in the Software Developer's Kit.

Note that the procedure CCPIPEINIT must be called prior to
calling any of the other procedures or functions in the ccPIPES
unit. The parameter Netloc specifies which server will be used
for pipe operations. Specifically, the following fields of
Netloc must be defined before calling CCPIPEINIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either OmninetDisk or LocalDisk

Here is a portion of a SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES {(CORVUS.LIBRARY)} UCDEFN, UCDRVIO, UCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; ({error code)
NetAddr: CDAddr:;

Corvus Systems 190

Mass Storage Systems GTI Using Pipes

£: FILE;
n: INTEGER;
buf: DrvBlk:;
BEGIN
ccDrvioInit; initialize unit ccDRVIO)

Initslot (NetAddr):; this procedure, from ccDrvio,
initializes slotno, stationno, and kind
fields to boot device. Set driveno to

1, all other fields to 0 }

P A g o~

ccPipeInit(NetAddr); (initialize unit ccPipes }
{ get file name and open it...)
pname := 'PRINTER'; (open pipe for writing)
pno := PipeOpWr(pname);
IF pno < 0 THEN { report error and exit... };
WHILE NOT EOF(f) DO BEGIN
n := BLOCKREAD(£, 1, buf):
err := PipeWrite(pno, 512, buf);
IF err < 0 THEN (report error, purge pipe, and exit... };
END;
err := PipeClWr(pno):
{ close file...)

END.

M8-DOS l1l.x and 2.x Constellation II:

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with MS Pascal.

CP/M 86 and CP/M 80 Constellation II:

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with Pascal MT+.

Apple Pascal Constellation I:

Look at the interface sections for the following units:

DRIVEIO and PIPES.

Corvus Systems 191

Mass Storage Systems GTI Using Pipes

These units are found in library CORVUS.LIBRARY, which is
contained on the standard distribution diskettes.

Note that the procedure PIPESINIT must be called prior to calling
any of the other procedures or functions in the PIPES unit. The
parameter should be set to FALSE.

Here is a portion of a SPOOL program for Apple Pascal:

PROGRAM SPOOL;
USES {CORVUS.LIBRARY) DRIVEIO, PIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; (error code)

f: FILE;
n: INTEGER;
buf: BLOCK;
BEGIN
DriveIoInit; { initialize unit DrivelIO)

PipesInit (FALSE); (initialize unit Pipes)
{ get file name and open it...)

pname := 'PRINTER':; { open pipe for writing)}
pno := PipeOpWr(pname);
IF pno < 0 THEN (report error and exit... };

WHILE NOT EOF(f) DO BEGIN
n := BLOCKREAD(£, 1, buf);
err := PipeWrite(pno, 512, buf):;

IF err < 0 THEN { report error, purge pipe, and exit... }:
END;

err := PipeClWr(pno):
{ close file... }
END L]

Apple DOS Constellation I/II:

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
MUX networks, and OMNIBCI.OBJ is for OmniNet networks. See
Chapter 4 for information on these procedures.

The program SPOOL on the distribution floppy for Constellation I
shows how to send pipes commands using these routines.

Corvus Systems 192

DEVICE SPECIFIC

INFORMATION A

This appendix discusses the unique characteristics of each mass
storage device.

The following devices are described:

Rev B/H drive
omniDrive
The Bank

For each device, the following information is provided:

Hardware description

Firmware and PROM code interaction
Firmware layout

Device parameters

Front panel LED's

DIP switch settings

Corvus Systems 193

Mass Storage Systems GTI Rev B/H Drives

REV B/H DRIVES

The Rev B/H drives may be used stand-alone, in a Constellation
network attached to a Corvus multiplexer, or in an Omninet
network attached to a Corvus disk server.

Up to four drives may be daisy-chained. The controller on drive
one handles all commands except those with a drive number
specifying an add-on drive. For add-on drives to work, drive one
must know how many drives are daisy-chained to it. Drive one
gets this information as part of its power-up procedure. Thus
the add-on drives must be powered-on when drive one is reset.

The drive number is set with a DIP switch; the DIP switch
settings are described later in this section.

Rev B/H Hardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The Rev B/H Corvus drives consist of an IMI Winchester hard disk,
two or three printed circuit boards (depending on model), and a
power supply.

The disk controller consists of a 280 microprocessor, 4k bytes of
EPROM, and 5k bytes of RAM. Communication with the outside world
is handled through two input/output ports: one connected to a
bidirectional data bus, and the other providing control signals.
These signals are available on the 34-pin Corvus-IMI bus at the
back of the drive. The signals on this bus are further described
at the end of this section.

Rev B/H Firmware And Prom Code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, Rev B/H code is resident
both in PROM and RAM. Corvus has a convention that designates
the code in PROM as PROM code and that in RAM as firmware. This
document follows that convention.

Part of the controller code is in the 4k PROM. Because of the
limited controller RAM, the firmware consists of several segments
which are overlayed as needed. The main part of the firmware,
the dispatcher, is 1k bytes long and is the command dispatcher.
It intercepts the command string sent from the host, decodes it,

Corvus Systems 194

Mass Storage Systems GTI Rev B/ll Drives

then activates the appropriate routines in the PROM or overlays
the appropriate firmware into the RaAM.

The firmware code occupies several blocks in an area called the
firmware area. The firmware area occupies the first two
cylinders of the Rev B/H drive. The first cylinder contains the
firmware, the second one is a duplicate. Besides the firmware
code, the firmware area contains other information such as the
track sparing information, the drive parameters, etc. Refer to
the next section for the layout of this area.

At power on, the PROM code initializes itself and then examines
the front panel switches. If all switches are in the normal
position, the controller reads in the boot block (block 0 of the
firmware). The boot block performs some initialization, then
loads the dispatcher into RAM and transfers control to it. 1If
the firmware is bad, the drive will not come ready.

If, on power on, the PROM code finds that the Format switch is
on, it utilizes the command dispatcher in PROM. The capability
of this dispatcher is quite limited, however, as it allows the
host only the functions such as format, verify, and read-write to
the firmware area. If, on power on, the PROM code finds that the
ILSI-11 switch is on, the LSI code is loaded from the firmware
area into RAM.

Rev B/H Firmware Layout

The first two cylinders on all drives are allocated as the
firmware area, the second cylinder being a backup copy of the
first. There are no spared tracks allowed in this region; all
blocks must be good. The usage for the blocks within a cylinder
is shown below.

Corvus Systems 195

Mass Storage Systems GTI

Block | Len | Description
o | 1 | Beot Block
1 | 1 | Disk parameter block (see below)
T2 | 1 | Diagnostic block (prep code)
T3 | 1 | constellation parameter block (see below)
"4 | 2z | pispatcher code
"6 | 2z | Pipes and semaphores code. The semaphore
| | table is contained in block 7, bytes
| | 1 - 256.
"8 | 10 | Mirror controller code
I8 | 2 | LSI-11 controller code
20 | 2z | Pipes controller code
22 | 3 | Reserved for future use
25 | & | Boot blocks 0-7. Apple II uses 0-3,
| | Concept uses 4-7.
"33 | 4 | Active user table
37 1 3 | Reservead

Ve - - S D D D D D WP S RGP G D G GRS SR S SR SN Gy G D DGR G WS S D S R D D G T D S W D G WS R W S S e .

Corvus Systems

Rev B/H Drives

196

Mass Storage Systems GTI Rev B/H Drives

Block 1, the disk,parameter’block, contains the following
information:

0 | 16 | Spared track table (Rev B drives) -
| | 2 bytes per spared track (1lsb,msb).
| | End of table is FFFFh.

-------------------------- T . R G D D S S - G S A D D SR G S G .

16 | 1 | Interleave factor

17 | 1 | Resexrvea T

18 | 14 | virtual drive table —- R
| | 2 bytes/entry (lsb,msb). Unused entries
| | are FFFFh.

32 | 8 | LsI-11 virtual arive table

40 | & | LsI-11 spared track table

48 | 432 | Reservea T

w0 | 32 | Spared track table (Rev H drives)

I
| 2 bytes per spared track (lsb,msb). End
| of table is FFFFh. Bytes 480-493 must

| match bytes 0 to 13 (see below)

There are two spared track tables for Rev B/H. The first 7
entries in the second table should match the 7 entries in the
first table. Rev B drives can have a maximum of 7 spared
tracks; Rev H drives can have a maximum of 31 spared tracks.

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put
in the firmware area for archival purposes only. The host uses
a diag file separate from the firmware area.

Corvus Systens 197

Mass Storage Systems GTI Rev B/H Drives

Block 3 is the Constellation parameter block. Its format is
shown below:

0 | 12 | Multiplexer slot and polling parameters

12| 2 | Block address of Pipe Name Table
| | (1sb,msb) (start of pipes area)

1& | 2 | Block address of Pipe Fointer Table
| | (1sb,msb)

l6 | 2 | Number of blocks in pipes area (lsb,msb)

Tla | 470 | Reservea

288 | 12 | Reserved for software protection

500 | 12 | Reserved for serial mumber

Rev B Parameters

Model 6 Mb Model 11 Mb Model 20 Mb

Sectors per track 20 20 20
Surfaces (heads) 4 3 5
Cylinders 144 358 388
Total tracks

per drive 576 1074 1940
Reserved for

spares 7 7 7
Reserved for

firmware 8 6 10
Usable tracks

per drive 561 1061 1923
Blocks per 11220 21220 38460

drive

Rev B Front Panel LED's And Bwitches
The front panel of the Rev B/H drive has three (3) LED's: a FAULT

LED, a BUSY LED and a READY LED. During power on , the FAULT LED
and the READY LED should be on, and the BUSY LED flashing, until

Corvus Systems 198

Mass Storage Systems GTI Rev B/H Drives

the end of the initialization. When the initialization is done,
the following light conditions may occur during drive operations:

FLT LED | BSY LED | RDY LED | Condition
off | on | off | Firmware not installed or
| | l or corrupted

off | off | on | Ready

off | on | off | In prep mode

on | flash | off | Operation error
| 1/4 sec | |

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned off and the BSY
LED turned on. You must be careful when this condition occurs as
the disk can be reformetted and all data can be lost.

There are four toggle switches located beneath the front panel
LED's. These are, from left to right, (1) LSI-1l1 switch, (2) MUX
switch, (3) format switch, (4) reset switch. The normal position
for each switch is to the left.

Rev B DIP Bwitches
There is an 8 position DIP switch accessible through the trap

door located on the bottom of the drive case. This switch is
used to set the drive number for daisy-chained drives.

Corvus Systems 199

Mass Storage Systems GTI

Switch

Drive

number 1l 2 3
1 | X | X |
2 | X | 0| X
3 | X | 0|
4 | o | X |
5 | 0] X |
6 | 0] 0|
7 | O| O]

setting

X = CLOSED; O = OPEN

The DIP switch pressed in on

OPEN.

Rev H Parameters

Model 6 Mb
Sectors per track 20
Surfaces (heads) 2
Cylinders 306
Total tracks 612
per drive
Reserved for 31
spares
Reserved for 4
firmware
Usable tracks 577
per drive
Blocks per 11540
drive

Model 11 Mb

20

4
306
1224
31

8

1185

23700

Rev H Front Panel LED's And Bwitches

Same as Rev B.

Corvus Systems

Rev B/H Drives

the side marked OPEN is considered

Model 20 Mb
20
6
306
1836
31
12

1793

35860

200

Mass Storage Systems GTI Rev B/H Drives

Rev H DIP Switches

There is an 8 position DIP switch located on the controller PC
board. This switch is used to set the drive number for
daisy-chained drives. To access this switch, you must remove the
top drive cover:; the board is mounted on the inside of the drive
cover.

Switch setting

Drive
number 1 2 3 4 5 6 7 8
e trmrcccecee—————- +
1 { X| =1 =1X}|=1=1=1-=- }
2 : X|=-|=-]1Oo|=-|=-|-=-1-=- :
3 } o|l=-|=-1X]|=-1=-1-1-=- }
4 ol =-1l=-1Oo]=-|=01=1+=1I

X = CLOSED; O = OPEN
The DIP switch pressed in on the side marked OPEN is considered
OPEN.

There is also a 4 position DIP switch located on the back panel
of the drive. This switch is used to specify whether an internal
Corvus MIRROR card is present in the drive.

Switch setting

Meaning 1 2 3 4
------- +---——-—-------—+
No MIRROR/external MIRROR | X | X | X | X |
l --------------- |
PAL/SECAM MIRROR | X1 0} O] O]
l l
NTSC MIRROR oo O] O]
e eene------—--

X = CLOSED; O = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Corvus Systems 201

Mass Storage Systems GTI

Disk Flat Cable Interface

All cable assignments are TTL.

Cable wire assignments:

NAME
Data
Data
Data
Data
Data
Data
Data
Data
DIRC
READY
=-STRO
=RESE
+5 vo
Groun

Alternate select

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
(bus dir)

NoOoObdhWNEHO

BE
T
1lts
a

Reserved

Unuse

Corvus Systems

da

ORIGINATOR
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
drive

drive

computer

drive

drive

drive

drive

computer

Rev B/H Drives

FLAT CABLE WIRE
25
26
23
24
21
22
19
20
9
27
29
31
3,4,34
6,8,10,17,28,30,32
11
5
1,2,7,12-16,18,33

202

Mass Storage Systems GTI Rev B/H Drives

Cable timing
General case:

Command initiation and computer to drive data transfer.

READY ====-mcecccceece- + L et LT + +-
l l I |
e ————— + e ———— +
500 nsec.
<>
=STROBE ====-ccc-- R L + dememcccccceea-
|| I
+——t + -t
> 50 nsec.
CEEID RIS D>
[====mmmmome- [==m=mmmmmoes
DATA ~--=-cc-=- < >emmmcccccan—e < >emem=
------------ / -----mmemme—/
DIRC

The drive indicates its readiness to accept a command by raising
the READY line. The computer then puts a command byte to the
data lines and pulses =-STROBE (the command byte is to be latched
by the drive on the rising edge of =-STROBE). Upon seeing the
-=STROBE pulse, the drive drops the READY line as an
acknowledgement to the computer. When ready for the next command
byte the drive again raises the READY line.

The drive takes each command byte as it needs it. If it is
expecting another command byte, and one is not there, the drive
will timeout after approximately 4 seconds. The drive flushes
the current command, and waits for a new command to start.

At the end of the command sequence, the drive keeps the READY
line low until the desired operation has been performed. Upon
completion of the operation, the drive lowers the DIRC line and
raises the READY line, allowing the computer to read data and
status information. Note that all commands consist of a write
phase, during which command and data information is sent to the
drive, followed by a read phase, during which status and data
information is received from the drive.

Corvus Systems 203

Mass Storage Systems GTI Rev B/H Drives

Drive to computer data transfer:

o ———— + o ——— + +=
I I I I I
READY ——wed tomeec e + temmcecccceee [/ mm——— +
=STROBE =====- + temmceccccresccncaa + Femmmccccccccccce- V4 At
I I
+==t +==t
J=mmmmmmmee [==mmmmmmm—=-
DATA ====-= < Sem——— < Srmemm—- [/ ===
------------ / et
DIRC ====+ tm———
I I
bt // ===+

The drive starts a computer read sequence by lowering the DIRC
line. The drive then puts a byte to the data lines and raises
the ready line. The computer then pulses the -STROBE line,
capturing the data on the rising edge. The drive then lowers the
READY line until the next data byte is ready to send. After the
last byte is transferred, the drive raises the DIRC line prior to
raising the READY line.

Special conditions:

There are two special conditions which deviate from the general
cable timing information presented and must be accounted for by
the computer-disk controller or by the computer-disk handler.

Case 1 -- READY line glitch after the last byte of command.

After the last command byte is received by the drive, the READY
line goes high (for 20 uSEC. or less). Since this occurs prior
to the completion of the command operation, it must be ignored.
Since the glitch occurs while the DIRC line is high, it is easy
to detect either in hardware, by gating, or in software, by the
procedure shown below in pseudo-code.

REPEAT UNTIL (DIRC = LOW) AND (READY = HIGH):;

Case 2 -- DIRC line glitches after last byte of Mirror command.

After the last command byte of a Mirror command is received, the
DIRC line repeatedly alternates between high and low, while the
drive talks to the Mirror. Since these changes occur while the
READY line is low, they are easy to detect either in hardware, by
gating, or in software, by the procedure shown below in
pseudo-code.

Corvus Systems 204

Mass Storage Systems GTI Rev B/H Drives

REPEAT UNTIL (READY = HIGH) AND (DIRC = LOW):;

Note that the two glitch cases are resolved with a single fix.

Cable Connector Description

A 17 x 2 female connector is attached to the cable. The red
stripe on cable is pin 1.

U G S N DI SR TR DRI S RS SR AR
| 1] 3] S| 71 9111]13|15|17]19(21|23]25|27|29|31|33|
S e s s e s At et St DL
| 2| 4] 6] 8(10]12]|14]16]18]20]22|2426|28]|30|32]|34|
s St L

Pin 1 is normally designated by a square pad on the circuit side
of the interface card.-

OMNIDRIVE

The OmniDrive is a Winchester hard disk device with a built-in
omninet disk server interface. Functionally, it resembles a Rev
B/H drive connected to a disk server. The OmniDrive is designed
such that it is compatible with the old disk server and disk
drive combination to minimize software impact. However, some
changes are warranted due to hardware constraints and systems
requirements. Also, certain features are intended as upgrades to
the feature set. All the changes from Rev B/H controllers are
documented in Appendix C.

The OmniDrive is a self-contained box with a controller and disk
server on the same PCB. It does not support a flat cable
interface and has no daisy chain capability. To expand the
capacity of the network, more OmniDrives can be attached to the
omninet cable, effectively forming a multiple server network.

omniDrive Hardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The OmniDrive controller consists of three main sections: a
transporter, a disk server and a disk controller. The
transporter section communicates to the Omninet. It mainly
consists of three chips: a 6801 processor, an ADLC and a custom

Corvus Systems 205

Mass Storage Systems GTI omniDrive

gate array. The disk server section adds one RAM to buffer data
in and out of the network. It also has some firmware code that
understands Constellation protocols. The disk controller
utilizes a hard disk controller chip (WD1010) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller
(socket can also accommodate 16k bytes PROM; the extra
PROM space is used if more code is needed)

There are four RAM sockets on the controller: two designated as
share RAMs and two as scratch RAMs. The share RAMs can be
accessed by the Omninet gate array chip, thus they can be DMaAed
from and to the network. The 6801 processor can also read-write
to these share RAMs. The two scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

The shared RAMs are utilized as follows:

2k bytes - disk server buffer

2k bytes - read-write buffer to 1010
The scratch RAMs are utilized as follows:

1k bytes - disk server scratch RAM

1k bytes - disk controller scratch RAM

and semaphore table
1k bytes - pipes table
1k bytes = downloaded controller code

omnibrive Firmware And Prom Code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, OmniDrive code is
resident both in PROM and RAM. Corvus has a convention that
designates the code in PROM as PROM code and that in RAM as
firmware. This document follows that convention.

Most of the controller code is in the 8k PROM. It handles the
disk server function as well as the actual disk controller
function. The firmware code, 1k bytes long, is essentially a
command dispatcher. It intercepts the command string sent from
hosts, decodes it, then activates the appropriate routines in the
PROM.

The firmware code occupies two blocks in an area called the
firmware area. The firmware area occupies the first four tracks
of the OmniDrive. The first two tracks contain the firmware, the
last two are duplicates. Beside the firmware code, the firmware
area contains other information such as the track sparing

Corvus Systems 206

Mass Storage Systems GTI OmniDrive

information, the drive information, the pipes table, etc. Refer
to the next section for the layout of this area.

At power on, the two dispatcher blocks are loaded from the media
to RAM. This RAM code now functions as the command dispatcher.
If the firmware does not exist on the disk, the controller
switches to a special command dispatcher entirely resident in
PROM. The capability of this dispatcher is quite limiteq,
however, as it allows the host only the functions such as format,
verify, and read-write to the firmware area.

omniprive Firmware Layout

In the OmniDrive, the first four tracks of the drive are reserved
for the Corvus firmware. The firmware is 36 blocks long (block
number 0-35) and thus occupies 2 tracks. The firmware is
duplicated for safety in the next two tracks.

The following is the layout of the firmware area:

0 | 1l | Spared track table (see below)
"1 | 1| Disk parameter block (see below)
"2 | 1] Diagnostic block (prep block)
"3 | 1| constellation parameters (see below)
4 | 2| Reservea 7
"6 | 2 | Dispatcher code
"8 | 1| pipe Name table
s | 11 | Reservea
20 | 1| pipe Pointer table
21 | 3 | Reservea
24 | 8 | Boot blocks 0-7. Apple II uses blocks 0-3,

| | Concept uses blocks 4-7

Corvus Systems ; ‘ 207

Mass Storage Systems GTI omnibDrive

Block 0 is the spared track table. The table has the following
format:

The end of the table is indicated by an entry of FFFFh. The
number of spared tracks reserved is different for various drive
models. The maximum number of spared tracks for a drive is in
ROM, and can be obtained by the Get Drive Parameters command.
The maximum number of spared tracks supported by the controller
is 64.

Block 1 is the disk parameter block. It contains the following
information:

"6 | 16 | Reservea
16 | 1| Interleave factor
"17 | 31| Reservea
T48 | 2 | Starting block address of pipes area
| | (1sb,msb)
"50 | 2 | Number of blocks in pipes area (lsb,msb)
“s2 | 1| write-verify flag
"53| 195 | Reservead
248 | 8 | Format password

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put

in the firmware area for archival purposes only. The host uses

a diag file separate from the firmware area.

Corvus Systems 208

Mass Storage Systems GTI

Block 3 is the Constellation block.

following information:

omniDrive

It currently contains the

Byte | Len | Description

"o | 488 | Reserved.
488 | 12 | Reserved for software protection.
500 | 12 | Reserved for serial mumber.

OmniDrive Parameters (l-Feb-84)

IMI 5006H
IMI 5012H
IMI 5018H

Rodime
Rodime
Rodime
Rodime

Dansei
Dansei
Dansei
Dansei

Ampex 7

201
202
203
204

RD4064
RD4127
RD4191
RD4255

Ampex 13
Ampex 20

Ampex

Microp
Vertex
Rodime

Maxtor
Maxtor
Maxtor

27

1304
150
RO204E

XT1065
XT1105
XT1140

Miniscr 2006
Miniscr 2012
Miniscr 4020

Heads

2

4
6
2
4
6
8
2
4
6
8
2
4
6
8
6
5
8
7
1
1
2
4
4

Corvus Systems

256
256
256

0]
0
o]
0

128
128
128
128

128
128
128
128

400
N/A

N/A
N/A
N/A

329
329
329

319
319
319
319

337
337
337
337

319
319
319
319

N/A
N/A
640

N/A
N/A
N/A

336
336

Max
Spared

Cyls Tracks Capacity Precom Cyl Land Cyl
306 12 10728
306 20 21600
306 28 32472
306 12 10728
306 20 21600
306 28 32472
306 36 43344
306 12 10728
306 20 21600
306 28 32472
306 36 43344
306 12 10728
306 20 21600
306 28 32472
306 36 43344
823 40 88092
987 40 88038
618 40 88200
918 46 114768
918 70 180432
918 94 246096
306 12 10728
306 20 21600
459 28 32472

522

209

Mass Storage Systems GTI omniDrive

omnibrive Front Panel LED's

The front panel of the OmniDrive has three LED's: a FAULT LED, a
BUSY LED and a READY LED. During power on , the BUSY LED should
be on until the end of the initialization. When the
initialization is done, the following light condition might
occur:

FLT LED | BSY LED | RDY LED | Condition

on | on | off | Firmware not installed or
| | | corrupted
on | on | on | Same address as another

| | | node on network

off | off | on | Ready

on | off | on | In prep mode

flash | off | off | Wrong transporter version
1/4 sec |] |

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned on and the BSY
LED turned off. You must be careful when this condition occurs
as the disk can be reformatted and all data lost.

Corvus Systemns 210

The Drive Tables of the Shadow Drive in the Second Preliminary Shadow
Drive Prom are as follows:

Switch Spare Total Jp
U22 HDA Model Cyl Hds Blks Blks RWC PreComp Park E3
i) 0 IMI 5006H 306 2 12 10728 - 256 329 -
?5 1l IMI 5012H 306 4 20 21600 - 256 329 -
gﬂ/ 2 IMI 5018H 306 6 28 32472 - 256 329 -
(} 3 Rodi 201 306 2 12 10728 132 0 319 A-B
o 4 Rodi 202 306 4 20 21600 132 0 319 A-B
5 Rodi 204 306 8 36 43344 132 0 319 A-B
6 Rodi 204E 620 8 56 88200 - 0 639 -
7 Mini 3212 612 2 20 21600 - 128 656 -
8 Mini 3425 612 4 36 43344 - 128 656 -
9 Mini 6053 992 5 56 88200 - 512 auto -
10 Den 4064 306 2 12 10728 - 132 337 -
1l Den 4127 306 4 20 21600 - 132 337 -
12 Den 4255 306 8 36 43344 - 132 337 -
13 CMI 5206 306 2 12 10728 - 132 329 -
l4 CMI 5412 306 4 20 21600 - 132 329 -
15 Bull 530 987 3 20 52866 - none auto -
le Maxt 1140 918 15 128 245484 - none auto B-C
New Additions to the Drive Tables for OmniDrive Prom '18H' the
Shadow Drive.
Switch Spare Total JP
U22 HDA Model Cyl Hds Blks Blks RWC PreComp Park E3
1l7 Sea ST212 306 4 20 21600 - 128 305 -
18 Sea ST225 612 4 36 43344 - 256 633 -
19 Rodi 352 306 4 20 21600 132 0 319 A-B
20 Rodi 202E 620 8" 68 43344 - 0 639 A-B
21 Sea ST4026 615 4 36 43344 - 300 auto -
? 22 Sea ST4038 733 5 40 65178 §CES o 556 auto -
? 23 Sea ST4051 977 5 56 88650 - 556 auto -
24 Mini 8425 612 4 36 43344 - 0 663 -
25 Mini 6032 1024 3 30 5469457 512 auto =~
-——3X26 Mini 6085 1024 8 85 88200 ¥ISY 512 auto -
27 Maxt 2085 1224 7 90 152532 - none auto B-C
28 Maxt 2140 1224 1l 128 239976 - none auto B-~C
29 Maxt 2190 1224 15 128 328104 - none auto B~C
-=>30 Micr 1304 (;ggﬁﬁﬂa 6 40 88092 5¥SXf 400 auto -
31 Micr 1325 4 8 8 145854 - 400 auto -
32 Bull 550 987 5 (3) 88200 - none auto -
33 Bull 570 987 7 40 123570 - none auto -
34 Bull 585 1166 7 85 145314 - none auto -
35 Hit 511-3 699 5 30 62298 - 256 auto -
36 Hit 511-5 699 7 751 8695857 256 auto -
37 Hit 511-8 699 ° ‘85 111636 @ - 256 auto -
38 Tand 755 977 5 50 85958 §638¥ 0 auto -
39 Tand 362 612 4 36 43344 - 0 auto -
? denotes a questionable entry for the Precomp cylinder.

JP
E4

A-

JP
E4

| 1 ll????
Voo wwwwooowwwwoowOoOww

o ot e o ot 3 D o

L
[O I

Mass Storage Systems GTI OmniDrive

omniDrive DIP Switches

One of the design objectives for the OmniDrive controller is to
have a standard disk interface so that it can communicate with
drive mechanisms from various manufacturers. (ST-412 is the
de-facto standard for 5 1/4" disk drive).

The ST-412 standard only specifies electrical interface
requirements, but drives have different disk parameters (number
of heads, number of cylinders, landing track, etc). The
OmniDrive controller has an 8 position DIP switch which is used
to select the drive mechanism type. The tables of the drive
parameters are built into the PROM. The DIP switch selection
forces the controller at power-on time to load the appropriate
table entry into RAM, which the controller then uses as the set
of parameters. _

The DIP switch settings for PROM version ODB 0.9 are listed
below.

Switch setting

Drive
type 1 2 3 4 5 6 7 8
il D T +
IMI 5006H | X1 X | X | X | X | X | X | X |
IMI 5012H o T X I X1 X1 X xR %]
IMI 5018H X T ol X 1 X1 % X1 %]
Rodime 201 | 0 | o | X | %1 %1 %1 %] %)
Rodime 202 | X | X101 %1 %1 %1 %1 %I
Rodime 205 | 0 | X 10 | X1 X1 X1 %1 %I
Rodime 204 | X 10101 X1 %1 %1 %1 % |
Dansei D404 | 0 | 0 106 1 %1 %1 X1 %1%
Dansei RDA127 | X | X [X 1 01 X1 X1 %1% |
Dansei RD4151 | 0 | X | X 1 61 X1 X1 X1 %
Dansei RD4255 i'i'T'S'T'i'T'S'T'x°I'x'T X | X i

X = CLOSED; O = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Corvus Systems 211

Mass Storage Systems GTI omniDrive

Switch”setting

Drive
type 1 2 3 4 5 6 7 8
e cecr e r e —————— +
Ampex 7 oo X]|]O| X | X]| X]| X|
| ==mmmmmm e mmemmmmmmm—oooo- |
Ampex 13 | X | XJ]o0o]lOo|X|X]|X]| X|
[===--=emsmmesemmm——mm—oooooooes |
Ampex 20 ol X|0]O0 | X|X|X]|X|
| ~=mmmom————- seemmmemm——ooooooo- |
Ampex 27 | Xj0l0]lO0| X]| X |X]|X|

|
Micropolis 1304 | O J O | O | O | X | X | X | X |

Vertex 150 | X | X | X | X0 | X]|X]|X|
Rodime Ro204E | o 1 X I X1 X101 %1 %1%
Maxtor XT1065 | Kol o | X1 X101 %1 %1% |
Maxtor XT1105 | 0161 X1 X101 %1 %1X|
Maxtor X11140 | %1 X 106 1 X101 %1 %X1X|

|
Miniscribe 2006 | O | X | O | X | O | X | X | X |
Miniscribe 2012 | X | O] O | X | O | X

|
Miniscribe 4020 | 0 O JO | X | O | X

X = CLOSED; O = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

THE BANK

The Bank is a random access tape device designed to be a back up
and on-line device in an Omninet network. The product consists

of a tape transport (LM 101) and a Bank controller. The device

has a built-in Omninet interface and is a server on the network.
It supports all the standard Corvus disk commands.

The tape is a continuous loop with a loop time of 20 seconds for
a 200MB tape and 10 seconds for a 100MB tape. The long tape has
103 meters of media and the short one 53 meters. The tape spins
at a speed of 5.5 meters/sec. There are 101 tracks on the tape.
Track 0 is designated as the landing track. Track 1 is used as

the firmware track. Tracks 2-100 are the user tracks.

Corvus Systems 212

Mass Storage Systems GTI The Bank

Each track is internally divided into sections, called heads.
Each section is analogous to a track on a Winchester. A section
contains 256 sectors, 1024 bytes each. A 200MB tape has eight
sections, while a 100MB tape has four sections. A 200MB tape
therefore has 2048 sectors per track; four sectors are reserved
for sparing bad ones, so there are 2044 user sectors per track.
For a 100MB tape, there are 1024 sectors per track, with four
used for sparing, leaving 1020 user sectors per track.

The Bank Hardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The Bank controller consists of three main sections: a
transporter, a disk server and a tape controller. The
transporter section communicates to the Omninet. It mainly
consists of 3 chips: a 6801 processor, an ADLC and a custom gate
array. The disk server section adds one RAM to buffer data in
and out of the net. It also has some firmware code that
understands Constellation protocols. The tape controller
utilizes a hard disk controller chip (WD1010) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller

There are 5 RAM sockets on the controller: 2 designated as share
RAMs and 3 as scratch RAMs. The share RAMs can be accessed by
the Omninet gate array chip, thus they can be DMAed from or to
the network. The 6801 processor can also read-write to these
share RAMs. The three scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

The shared RAMs are utilized as follows:

2k bytes - disk server buffer

2k bytes - read-write buffer to 1010
The scratch RAMs are utilized as follows:

1k bytes - disk server scratch RAM

1k bytes - disk controller scratch RAM

and semaphore table
1k bytes - pipes table
3k bytes - downloaded controller code

Corvus Systems 213

Mass Storage Systems GTI The Bank

The Bank Firmware And Prom Code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, Bank code is resident
both in PROM and RAM. Corvus has a convention that designates
the code in PROM as PROM code and that in RAM as firmware. This
document follows that convention.

Most of the controller code is in the 8k PROM. It handles the
disk server function as well as the actual tape controller
function. The firmware code, 3k bytes long, is essentially a
command dispatcher, but also contains the pipes and semaphore
code. The command dispatcher intercepts the command string sent
from a host, decodes it, then activates the appropriate routines
in the PROM. The pipes and semaphore code perform the functions
their names imply.

The firmware occupies the first 38 blocks of track 1. The first
block is the boot block which contains the parameters for that
tape. This block.is duplicated in the next two blocks for
reliability. The dispatcher code occupies two blocks in the
firmware. The pipe and semaphore code occupies four blocks.
Besides this code, the firmware area contains other information
such as the track sparing information, the pipes table, etc.
Refer to the next section for the layout of this area.

At power on, the dispatcher and the pipes and semaphore code are
loaded from the media to RAM. If the firmware does not exist on
the tape, the controller switches to a special command dispatcher
entirely resident in PROM. The capability of this dispatcher is
quite limited, however, as it allows the host only the functions
such as format, verify, read-write to the firmware area.

The Bank Firmware Layout

In each Bank Tape, there is a non-user accessible area where the
Corvus firmware is located. The firmware is 36 blocks long
(block number 0-35) and occupies 38 sectors in track 1 of the
tape. Each sector is 1024 bytes long, but the firmware only
utilizes the first 512 bytes of each sector. The first firmware
block, the boot block, contains vital information about the tape
and is triplicated.

Corvus Systens 214

Mass Storage Systems GTI

The following is the layout of the firmware area:

The Bank

o | 1 Boot block, tape parameters, start of spare
| sector table (see below)
"1 | 1| contains the rest of the spare sector table
"2 | 1| Format results (see below)
"3 | 1] conmstellation block (see below)
4| 2 | Reservea T
"6 | 2z | pispatcher
"8 | 1| pipe name table T
"o | 3| Diag blocks 0, 1, 2
""12 | 4 | Pipes and semaphore code
16 | 4 | Reservea T
20 | 1| Pipe pointer table
21 | 3| Reservea
24 | 8 | Boot blocks 0-7. Apple II uses 0-3,
| Concept uses 4-7
32 | 4 | Active User table

Corvus Systems

215

Mass Storage Systems GTI The Bank

Block 0 contains tape information and sector sparing of the first
40 tracks in the following format:

- e e s s - . v o e . e e

Corvus Systems

Bad track bit map
(first byte corresponds to tracks 0-7,
arranged MSB: TO, Tl, ... T7 :LSB)

Number of sectors per section
(0 = 256 sectors)

Number of sectors per track
(1024 or 2048 - msb,1lsb)

Number of user sectors per track
(1020 or 2044 - msb,lsb)

Total user sectors
(101376 or 202356 - msb..lsb)

Tape type (bit 0 set - fast tracks on:
bits 1-7 reserved)

216

Mass Storage Systems GTI The Bank

Each track has eight bytes reserved in the bad sector table for
four entries (an entry is two bytes). The first byte of the
entry is the head of the bad sector; the second byte is the
sector number. The entries within a track are sorted in order
(low to high). The unused entries are filled with OFFFFH.

Block 1 contains the rest of the spare sector table:

0O | 488 | Track 40 to track 100 bad sector table

488 | 24 | Reserved.

Block 2 contains the result of the last tape format. The
layout of this data is shown:

2 | 510 | Bad track list, each entry two bytes
| | (1sb,msb)

Block 3 is the Constellation block. It currently contains the
following information:

Blocks 9, 10, 11 are the diag blocks. They contains code to
format, verify, and read-write firmware area. This code is
put in the firmware area for archival only. The host uses a
diag block file that is separate from the firmware file.

Corvus Systems 217

Mass Storage Systems GTI The Bank

The Bank Parameters

100MB tape 200MB tape
Number of tracks per tape 101 101
Number of sections per track 4 8
Number of sectors per section 256 256
Number of sectors per track 1024 2048
Number of bytes per sector 1024 1024
Number of spare sectors per track 4 4
Number of user sectors per track 1020 2044
Landing track number 0 0
Firmware track number 1 1l
Number of user data tracks 99 99
Loop time 9.4 sec 18.8 sec
Tape life 500 hours 500 hours
Number of start-stops 2000 2000

The Bank Front Panel LED'S

The front panel of The Bank has three LED's: a FAULT LED, a BUSY
LED and a READY LED. During power on , the BUSY LED should be on
until the end of the initialization. When the initialization is
done, the following light condition might occur:

FLT LED | BSY LED | RDY LED | Condition

on i on | off | Firmware not installed
| | i or corrupted

on | on | on | Same address as another
| |] host on network
off | off | on | Ready, tape is OK
flash | off | off | Wrong transporter version
1/4 sec | | |

Corvus Systems 218

Mass Storage Systems GTI The Bank

When The Bank is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned on and the BSY
LED turned off. You must be careful when this condition occurs
as the tape can be reformatted and all data lost. The following
lights could happen in prep mode:

FLT LED | BSY LED | RDY LED | Condition

on | off | on | Bank in prep mode

on | on | on | Bank is formatting

off | on | on | Bank is filling during
| | | format

off | on | off | Bank is verifying during
I I | format

off | on | off | Bank is executing cmnds
| I | in prep

Corvus Systems 219

Mass Storage Systems GTI The Bank

This page intentionally left blank.

Corvus Systems 220

Mass Storage Systems GTI Constellation Device Types

TABLES B

CONSTELLATION DEVICE TYPES

Specific types

1lh-1Fh
20h-3Fh

20h
21h

25h

2%h
2Ah
2Bh
2Ch
2Dh
2Eh
2Fh

30h
31lh

33h
34h
35h
36h
37h

Corvus Systems

are indented below their generic type.

Meaning
Generic disk device, booting; Corvus disk server
Generic Print Server
Reserved
Mirror Server
Bank
Omnidrive (generic type = 01)
Reserved.

Generic disk device, non-booting
Reserved for future mass storage devices.

Workstations. Workstations are Constellation
Boot number plus 20.

Generic Workstation Device Type
Apple II

Corvus Concept

IBM/PC or IBM/XT
Xerox 820

Zenith H89

NEC PC8000
Commodore PET
Atari 800

TRS-80 Model I

TRS-80 Model II
LSI-11

Apple ///
DEC Rainbow

TI Professional
Zenith 2-100
Corvus Concept Plus

221

Mass Storage Systems GTI Constellation Device Types

38h Corvus Companion
395h Apple MacIntosh
3Ah Sony SMC-7086

40h-5Fh Reserved for future workstations.

60h-7Fh Operating system types. Operating system types
are Constellation operating system number plus

60h.
61h Apple Pascal
62h Apple DOS 3.3
63h UCSD Pascal version 2.x
64h MS-DOS 1l.x
65h Apple SOS
66h Apple Pascal Runtime
67h CP/M 80
68h RT-11
69h RSX-11
6Ah PET DOS
6Bh NEWDOS (TRS-80 Mod I/III)
6Ch NEWDOS-80 (TRS-80 Mod I/III)
6Dh Atari DOS 2.0
6Eh UNIX System 3
6Fh CP/M 86
70h CCOS (Corvus Concept)
71h Constellation II Pascal IV.x
72h CP/M 68
73h NCI p-system
74h Softech p-system 1IV.1
75h Apple ProDOS
76h Apple MacIntosh
77h UNIX System 5
78h Apple II CP/M

80n-8Fh Gateways

80h Generic gateway
81h SNA gateway

90h-9Fh Reserved.

AOh-A8h Z80 based utility servers

AOh Generic Utility Server II server
Alh Enhanced print service
A2h Simple pipes bridge

A9h-AFh Reserved for future servers
BOh-FEh Reserved for future use

FFh Any device.

Corvus Systemns 222

Mass Storaye Systems GTI

CONSTELLATION BOOT NUMBER ASSIGNMENTS

Boot number
0,1, 2, 3
4, 5, 6, 7
9
10
11
12
13
14
15
leée
17
18
19
20
21
22
23
24
25
26

Corvus Systems

Computer type
Apple I1
Concept

IBM

Xerox 820
Zenith H89
NEC PC8000
Pet

Atari 800
TRS-80 MOD I
TRS-80 MOD III
LsI-11
Printer server
Apple ///

DEC Rainbow
TI Pro

2-100
Concept?2
Companion
MacIntosh
Sony SMC-7086

Constellation Boot number assignments

223

Mass Storage Systems GTI

Command

Read Sector (256 bytes)
Write Sector (256 bytes)
Semaphore Lock
Semaphore Unlock

Get Drive Parameters
Prep Mode Select

Park heads (Rev H)

Read Sector (128 bytes)
Write Sector (128 bytes)
Boot

Record Write

Semaphore Initialize
Pipe Read

Pipe Write

Pipe Close

Pipe Status 1

Pipe Status 2

Pipe Status 0

Semaphore Status

Pipe Open Write

Pipe Area Initialize
Pipe Open Read

Read Sector (256 bytes)
Write Sector (256 bytes)
Read Sector (512 bytes)
Write Sector (512 bytes)
AddActive

DeleteActiveUsr (Rev B/H)
DeleteActiveUsr (Omnidrive)

02h
03h
OBh:01h
OBh:11h
10h
lih
1llh
12h
13h
14h
l6h
1Ah:10h
1Ah:20h
l1ah:21h
1Ah:40h
1Ah:41h
1Ah:41h
1Ah:41h
1Ah:41h
1Bh:80h
1Bh:AOh
1Bh:COh
22h
23h
32h
33h
34h:03h
34h:00h
34h:01h

DeleteActiveNumber (Omnidrive)34h:00h

FindActive

34h:05h

Read Sector (1024 bytes) (Bank) 42h
Write Sector (1024 bytes) (Bank) 43h

Read Boot Block

Park heads (Omnidrive)
WriteTempBlock
ReadTempBlock

Echo (Omnidrive/Bank)

Corvus Systems

44h
80h
B4h
C4h
F4h

summary of Disk Commands

SUMMARY OF DISK COMMANDS IN NUMERICAL ORDER

Number of Data Bytes

Sent Received
4 257
260 1
10 12
10 12
2 129
514 1
514 1
4 129
132 1l
2 513

2 1

5 1l

5 516
xX+5 12
5 12

5 513

5 513

5 1025

5 257
10 12
10 12
10 12
4 257
260 1
4 513
516 1
18 2
18 2
18 2
18 2
18 17
4 1025
1028 1l
3 513

l 1l
514 1
2 513
513 513

224

Mass Storage Systems GTI Disk return codes

RETURN CODES FOR REV B/H DRIVES

The disk return code is a byte. The bits are interpreted as
shown below:

Bit # Meaning
bits 4-0 Error code (see below).
bit 5 l=recoverable error.
bit 6 l=verify error.
bit 7 l1=hard error.
Error code Meaning
0 00h Header fault.
1l 0lh Seek timeout.
2 02h Seek fault.
3 03h Seek error.
4 04h Header CRC error.
5 05h Rezero fault.
6 06h Rezero timeout.
7 07h Drive not online.
8 08h Write fault.
9 09%h Unused.
10 OAh Read data fault.
11 OBh Data CRC error.
12 0Ch Sector locate error.
13 0Dh Write protected.
14 OEh Illegal sector address.
15 OFh Illegal command op code.
16 10h Drive not acknowledged.
17 11h Acknowledge stuck active.
18 12h Timeout.
19 13h Fault.
20 l1l4h CRC.
21 15h Seek.
22 16h Verification.
23 17h Drive speed error.
24 18h Drive illegal address error.
25 1%h Drive r/w fault error.
26 1Ah Drive servo error.
27 1Bh Drive guard band.
28 1Ch Drive PLO error.
29 1Dh Drive r/w unsafe.

Corvus Systems 225

Mass Storage Systems GTI

The error codes on the previous page have significance only if
one or more of bits 5, 6, or 7 are also on.

Disk return codes

The table below

allows you to easily convert the disk result code into an error

code. Bits 5 and 6, or both, are set whenever a soft error

occurs. For a hard error, bit 7 is always set, and bits 5 and 6

may be set.

there is a hard error,

online.

Error code

29 1Dh

For example, if the disk return code is 87h, then
and the error code is 07h, Drive not

Soft error

bit 5

Corvus Systems

bit 6

Hard error

bit 5,7 bit 6,7

177 Blh 209 Di1h
178 B2h 210 D2h
179 B3h 211 D3h

180 B4h 212 D4h
181 B5h 213 D5h
182 B6h 214 Dé6h
183 B7h 215 D7h
184 B8h 216 D8h

185 BSh 217 DSh
187 BBh 219 DBh

188 BCh 220 DCh
189 BDh 221 DDh

226

Mass Storage Systems GTI Disk return codes

RETURN CODES FOR OmniDrive/BANK
Value Meaning
0 oh No error.
131 83h Seek error.

36 24h Soft sector header error.
132 84h Hard sector header error.

135 87h Drive not ready.
136 88h Write fault.

43 2Bh Soft CRC error (data).
139 8Bh Hard CRC error (data).

142 8Eh Illegal sector address.
143 8Fh Illegal opcode.

157 9Dh Format firmware track failure.

158 9Eh No tape inserted.
159 9Fh Cannot read boot block.

ACTIVE UBSER TABLE ERRORS

Value Meaning
(0] No error.
1 No room in active user table.
2 Duplicate name in active user table.
3 User not found in active user table.

BOOT COMMAND ERRORS
Value Meaning

4 Drive is not initialized (const II).

Corvus Systens 227

Mass Storage Systems GTI Disk return codes

PIPE BTATES

bit # Meaning

bit 7 1=contains data / O=empty
bit 1 l=open for read

bit 0 1=open for write

Value Meaning

0 OOh No error.

8 08h Tried to read an empty pipe.

9 0%h Pipe not open for read or write.
10 OAh Tried to write to a full pipe.
11 OBh Tried to open an open pipe.

12 OCh Pipe does not exist.

13 obh Pipe buffer full.

14 OEh Illegal pipe command.

15 OFh Pipes area not initialized.

Value Meaning
0 00h Semaphore not set.
128 80h Semaphore set.

S8EMAPHORE ERRORS

Value Meaning
0 00h No error.
253 FDh Semaphore table full.
254 FEh Semaphore table read-write error.
255 FFh Unknown error.

Corvus Systems 228

Mass Storage Systems GTI Transporter Messages

TRANSPORTER RESULT CODES

Value
0 O00h
<64 <40h
<128 <80h
128 80h
129 81h
130 82h
131 83h
132 84h
133 85h
134 86éh
192 COh
254 FEh

Meaning

No error.

Node identification number resulting from an
Initialize or Who Am I command.

Transmit retry count.

Transmit failure (retry count exceeded).
Transmitted messages user data portion was too
long for the receiver's buffer.

Message was sent to an uninitialized socket.
Transmitted message control portion length did
not equal receive socket's control buffer length.
Invalid socket number in command vector (must

be 80h, 90h, AOh, or BOh).

Receive socket in user.

Invalid destination node number in command vector.
(must be 00-3Fh or FFh).

Received an ACK for an Echo command.

Socket set up successfully.

Transporter command summary

Send message

Command vector Result record
Byte Contents Byte Contents
0 Command code = 40h 0 Return code
1 Result record address 1 Unused
4 Destination socket 4 User control info
5 Data address
8 Data length
10 User control length
11 Destination host

Setup receive

Command vector Result record
Byte Contents Byte Contents
0 Command code = FOh 0 Return code
1l Result record address 1 Source host
4 Socket number 2 Unused
5 Data address 4 User control info
8 Data length
10 User control length

Corvus Systems

229

Mass Storage Systems GTI

End receive

Command vector

Byte Contents
(o} Command code = 10h
1l Result record address
4 Socket number

Initialize

Command vector
Byte Contents
0 Command code = 20h
1 Result record address

Who am I

Command vector
Byte Contents
0 Command code.= Olh
1l Result record address

Echo

Command vector

Byte Contents
0 Command code = 02h
1l Result record address
4 Destination node

Corvus Systems

Transporter Messages

Result record
Byte Contents
0 Return code

Result record
Byte Contents
0 Return code

Result record
Byte Contents
0 Return code

Result record
Byte Contents
0 Return code

230

Mass Storage Systems GTI OmniDrive And Rev B/H Drives

OMNIDRIVE AND
8

I

|
REV B/H DRIVES | C
I
I

This appendix describes the differences between the OmniDrive and
the Rev B/H drives:

Physical Characteristics:

The OmniDrive has 18 sectors per track while Rev B/H drives have
20 sectors per track.

Firmware Layout:

The OmniDrive firmware area is arranged differently from that of
Rev B/H. Refer to Appendix A for details; the differences are
summarized below:

The firmware block number ranges from 0 to 35 for OmniDrive. Rev
B/H drives use physical head/sector number.

The sparing information for the OmniDrive is recorded in block 0
of the firmware. The Rev B/H drive records information in block

l. OmniDrive allows variable number of spare tracks for
different drives.

Prep Mode:

In Prep mode, the OmniDrive turns on FAULT and READY LEDs; the
Rev B/H turns on BUSY LED.

OomniDrive can accept up to four prep blocks. Rev B/H accepts
only one.

OmniDrive formats with a FFH pattern. A specific f£ill command
has to be sent to have a different pattern written.

Corvus Systems 231

Mass Storage Systems GTI omniDrive And Rev B/H Drives

Read-Write:

Read after write is an option selectable in the diagnostic
program.

Sector addressing scheme has been changed to support 24-bit
address.

Parking:

omniDrive implements parking as a firmware command (80h). Rev
B/H requires a special prep block.

Omninet Device Type:

The OmniDrive has a new Omninet device type (device 6). This
device type is returned to a Who Are You command.

Constellation Support:

A new DeleteActiveNumber command is provided to delete all active
users with the same host number. This command is currently not
supported in Rev B/H drives.

omnibrive does not have Constellation parameters to support the
multiplexer.

Vvirtual drives are not supported. To replace the virtual table,
a new sector address scheme is implemented (24 bit address).

The OmniDrive supports the new Constellation Disk Server Protocol
as well as the existing version. Refer to Chapter 2 for details.

Pipes And S8empahores:

Pipes tables (pointer and name) are located in the firmware area
of omniDrive. Rev B/H pipes tables are stored in the pipes area.

Pipe tables are resident in RAM at all time. They are written to
the disk when a pipe is closed after write or when the drive is
put in prep mode.

Pipe read-write only works with 512 bytes of data even though the
interface stays the same.

Corvus Systems 232

Mass Storage Systems GTI omniDrive And Rev B/H Drives

Wild card character (NUL) is supported in semaphore and pipe
operations.

OomniDrive semaphore table is not saved. It is resident in RAM
all the time. It is destroyed when the drive is powered off.

Corvus Systems 233

Mass Storage Systems GTI omnibDrive And Rev B/H Drives

Corvus Systemns 234

Mass Storage Systems GTI The Apple II Transporter

TRANSPORTER

CARDS D

THE APPLE II TRANSPORTER

The Apple II communicates with its transporter by first
formatting a command vector and then sending the command
vector address to the transporter through the use of one
control register. This control register is referred to as
the Command Address Register (CAR). When the command is
completed, a return code is placed in the result record. The
address of the result record is specified in the command
vector.

The CAR is an 8-bit register. 1Its address is determined by
the slot in which the transporter is installed as shown in
the chart below. Apple II I/IO space is memory mapped so
the addresses below are normal memory addresses and not I/O
addresses.

CAR ADDRESS

8S8LOT

NUMBER Hexadecimal Decimal Decimal
1 C090 49296 -16240
2 COAOQ 49312 -16224
3 COBO 49328 =-16208
4 Ccoco 49344 -16192
5 (o]0)5]0] 49360 -16176
6 COEO 49376 -16160
7 COFO 49392 -16144

When set, this bit indicates that the transporter is ready
to receive the next address byte of the three byte command
vector address. To issue a command to the transporter, this
address must be given to the transporter one byte at a time.
Every time an address byte is placed into the CAR, the RDY
bit of the CAR goes low and the next byte cannot be sent
until the RDY bit returns high again.

The three byte address is sent with the most significant byte

first. For the Apple II the first byte is always zero since
the Apple II address space only requires two address bytes.

Corvus Systems 235

Mass Storage Systems GTI The Apple II Transporter

goftware Notes

While the transporter is receiving a packet from the network
it cannot process a byte moved into the CAR, 80O the RDY bit
of the CAR remains low until the transporter can process the
next byte. This leads to a situation where a software I/0
driver may have to wait up to several milliseconds before
the RDY goes high again.

since the Apple II processor does not support interrupts, the
communication program should periodically check the return
code for a change in value. As it is conceivable, though
highly improbable, that the transporter could be modifying
the return code at the same moment as the processor is
viewing it, the processor should check the code a second time
after detecting a change. This will insure that the
processor sees the correct code value rather than a
mid-change garble.

Until the command has completed as indicated by the return code,
no additional data should be placed into the CAR by the sending
computer. This is because the transporter will only process one
command at a time.

The Apple II transporter is unbuffered. Data transfers with
host memory take place through DMA and do not disturb the
processor. There is no DMA overrun detection circuitry on
board the Apple II transporter card because host memory is
sufficiently fast that it is not needed.

An onboard boot ROM is provided with the Apple II transporter.

THE CONCEPT TRANSPORTER

The Concept transporter is a normal DMA transporter which
supports interrupts. Interrupts arrive at priority three.
After an interrupt arrives, the host must reset the interrupt
mechanism before another interrupt can happen. Interrupts
are reset when the processor performs a write operation to
any address between 030FC1l and 030FDF. The contents of the
write are unimportant.

A potential problem exists when several transporter
operations are pending concurrently. If two commands
complete within a short time of each other it is possible

" that the processor will not have a chance to reset the
interrupt mechanism between the two command completion
interrupt. To avoid this eventuality, the processor should
check the values of all the outstanding return codes before
returning from the interrupt subroutine. If any of these

Corvus Systems 236

Mass Storage Systems GTI The Concept Transporter

return codes indicates that the associated command has also
completed, the processor can then take appropriate action.

Concept I/0 space is memory mapped so all I/0 addresses are
simply standard memory addresses. This includes those given
above for interrupt resets.

To issue a command to the transporter, the processor must
write the command vector address, byte to byte, to any
address between 030FAl and O030FBF. Between each byte write,
the processor must check the transporter READY bit. This is
bit 0 of address 030F7F. Bit 0 high indicates that the
transporter is ready to accept the next byte of the command
vector address into the CAR.

A boot ROM is included on board the Concept transporter.

THE IBM PC TRANSPORTER

The IBM PC transporter is a buffered transporter which does
not support interrupts. There is a boot ROM on board which
extends from host CPU address DF000 to address E0000. The
ROM utilizes the first 1024 bytes of the 4K buffer RAM and
must have exclusive use of this area. The host should not
place command vectors or other command information in this
section of this buffer.

All processor read and write operations from and to the PC
transporter take place through the I/0 ports. The following
is a list of the possible processor actions and the I/0 ports
to which they should be directed.

Operation I/0 Port
Read Transporter Status Byte 0248
Read RAM 0249
Read RAM; then Increase the Counter by 1 024B
Write to the CAR 0249
Write the Counter High Byte 0248
Write the Counter Low Byte 024A

Write to RAM; then Increase the Counter by 1 024B

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.

Corvus Systems 237

Mass Storage Systems GTI The IBM PC Transporter

Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

Rom Bervices

There are four separately executable routines contained
within the IBM transporter onboard ROM. Each routine is
initiated by a standard 8086 intersegment long CALL to one
of the four ROM entry points. The four routines and their
entry points are as follows:

COLDSTART - DF000
WARMSTART - DF003
1/0 - DF006
DUMMYRET - DF009

The COLDSTART routine initializes the transporter card,
locates a disk server -on the network, loads the Constel-
lation II boot program from the disk and transfers control
to that program.

The WARMSTART routine initializes the transporter card.
The I/0 routine performs one of a number of services
depending on the contents of the AH register at the time the

routine is entered. The I/O services are discussed in detail
below.

The DUMMYRET routine performs a dummy interrupt return.

I/0 Bervices

There are six I/0 services. The contents of the 8086 AH
register at the time of entry to the I/0 routine determines
which service is performed. However, before any I/0 service
is requested, the host must call the WARMSTART routine. The
I/0 services will not function until the WARMSTART routine
has been executed. COLDSTART calls WARMSTART, though, so the
host need not make a separate WARMSTART call if the host used
the ROM to boot. Each I/0 service is described below.

o Identify Interface: (AH) = 00
Contents of 8086 registers on entry:
(AH) = 00

Contents of 8086 registers on exit:

Corvus Systems 238

Mass Storage Systems GTI The IBM PC Transporter

(AL) = 00
(AH) = OMNINET node number of the transporter (if the
node number is unique)
= FF (if a second transporter exists on the
network with the same node number)

o Transmit Data to the Drive and Accept a Response: (AH) = 01

Contents of 8086 registers on entry:

(AH) = 01

DS: (SI) = address of data to send to drive

ES: (DI) = address of buffer to receive data from
drive.

(CX) = number of data bytes to send to the drive
(maximum = 530)

(DX) = number of bytes expected back from the
drive excluding the return code (maximum =
530)

(AL) = network address of disk server

(BL) = number of timer units to wait for a reply
from the disk server. 00 = do not abort:;
wait forever. (a timer is approximately .86
seconds)

(BH) = number of transmit tries. 00 = 255 tries.

FF = try until successful. Should be
greater than 0.

Contents of 8086 registers on exit:
(AL) = return code from the drive. FF = aborted.
(CX) = number of bytes received from the drive
including the return code.

o Transmit Data to a Network Server: (AH) = 02

Contents of 8086 registers on entry:

(AH) = 02

ES: (DI) = address of data to transmit

(CX) = number of data bytes to transmit

(AL) = network address of server. FF = broadcast
to all servers.

(BH) = number of transmit tries. For broadcasts,

(BH) = number of times to transmit the
data.

Contents of 8086 registers on exit:

Corvus Systems 239

Mass Storage Systems GTI The IBM PC Transporter

(AL) = 00 (transmit successful)
= FF (transmit aborted)

o Transmit Data to a Network Server and Accept a Response:
(AH) = 03

Contents of 8086 registers on entry:

(AH) = 03

DS: (SI) = address of data to transmit

ES: (DI) = address of buffer to receive data from
server.

(CX) = number of data bytes to transmit
(maximum = 530)

(DX) = number of data bytes expected from the
server (maximum = 530)

(AL) = network address of server. FF = broadcast
to all servers.

(BL) = number of timer units to wait for a reply

from the server. 00 = do not abort; wait
forever. (a timer unit is approximately
.86 seconds)

(BH) = number of transmit tries. 00 = 255 tries.
Should be greater than 0.

Contents of 8086 registers on exit:

(AL) = 00 (transmit successful)
= FF (transmit aborted)

o Find any Disk Server on the Network: (AH) = 04
Contents of 8086 registers on entry:

(AH) = 04

(BL) = number of timer units to wait for a reply from
a disk server. 00 = do not abort; wait forever.
(a timer unit is approximately .86 seconds)

(BH) = number of tries. 00 = 255 tries. Should be
greater than 0.

Contents of 8086 registers on exit:
(AL) = 00 (operation successful)
= FF (operation unsuccessful)

(AH) = network address of the disk server that
responded.

o Send a Write Command to the Drive: (AH) = 05

Corvus Systens 240

Mass Storage Systems GTI The IBM PC Transporter

Contents of 8086 registers on entry:

(AH) = 05

DS: (SI) = address of command block to send to drive

ES: (DI) = address of data to send to drive

(CX) = length of command block in bytes
(normally 4)

(DX) = number of data bytes to send to the drive
(normally 512)

(AL) = network address of disk server

(BL) = number of timer units to wait for a reply
from the disk server. 00 = do not abort;
wait forever. (a timer unit is
approximately .86 seconds)

(BH) = number of transmit tries. 00 = 255 tries.
Should be greater than 0.

Contents of 8086 registers on exit:

(AL) = return code from the drive. FF = aborted.
(CX) = number of bytes received from the drive
including the return code.

THE NC-TRANSPORTER

The NC-Transporter is a buffered transporter which functions
with both the 8001 and 8801 NEC microcomputers. When used
with an 8001 it should be plugged into an 8031 expansion box.

The NC-Transporter has a 2K boot ROM on board which occupies
addresses 00000h to O3FFFh and kills the microcomputer
internal ROM when enabled. The ROM can be software enabled
by setting bit 5 of I/0 port 97 high, or, at reset time, by
selecting the auto boot option with the jumpers. For more
information see the NC-Transporter Installation Guide.

The NC-Transporter also supports interrupts. The interrupt
level can be selected using the transporter jumpers.
Information on the jumpers is available in the NC-Transporter
Installation Guide. To enable the interrupt facility, the
processor must set bit 4 of I/O port 97 high. The processor
can check interrupt status by examining bit 4 of I/0 port 97.

As the NC-Transporter is buffered there is no need for DMA
overrun detection circuitry.

All processor read and write operations from and to the H-89

transporter take place through the I/O ports. The following

is a list of the possible processor actions and the I/0 ports
to which they should be directed.

Corvus Systems 241

Mass Storage Systems GTI The NC-Transporter

Operation I/0 Port
Read transporter Status Byte 97
Read RAM 96
Read RAM; then Increase the Counter by 1 94
Write to the CAR 96

Write the Counter High Nibble,
the Interrupt Enable Bit,

and the Boot ROM Enable Bit 97
Write the Counter Low Byte 95
Write to RAM; then Increase by Counter by 1 94

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

As is clear from the list above, port 97 is used for a number
of different operatons. A clearer understanding of the
structure of port 97 may be gained from the diagram below.

PORT 97
S tommm—— tomm———— tomm———— tomm——— tomm——— tomm———— tom———— +
				I		
READY		ROM	INT	High Nibble of Address		
BIT		ENABLE	ENABLE		Counter	
e trm———— teeme—— tom———— tomm——— - -+ + +

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

As shown above, bit 7 of the transporter status byte (port
97) is the READY signal. When port 97 is read, bit 7 high
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR. When
writing to port 97, the value to which bit 7 is set is
unimportant.

THE VT-180 TRANSPORTER

The VT-180 transporter is a normal DMA transporter which
supports interrupts. Interrupts may be enabled by setting
bit 0 of address EE high. The CPU must also be running in
interrupt mode 0. After an interrupt occurs, the RESTART 8
command should be issued to the CPU.

The command address register on the VT-180 card lies at I/O

address EF. Command vector address bytes must be written to
this address.

Corvus Systems 242

Mass Storage Systems GTI The VI-180 Transporter

The status port of the VT-180 card lies at I/0 address EE.
Bit 7 of this byte is the transporter READY line. Bit 7 high
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR.

THE SONY TRANSPORTER

The Sony transporter is a buffered transporter which has an
interrupt status bit that can be checked when line time 60 HZ
interrupt occurs (or other interrupts).

All processor read and write operations from and to the Sony
transporter take place through the I/0 port 4CH-4FH. The
following is a list of the possible processor actions and the
I/0 ports to which they should be directed.

Operation I/O0 Port HEX
Read transporter status byte 4F
Read RAM 4E
Read clears interrupt status bit 4D
Read buffer RAM; then Increment the Counter 4C
Write to the command address register (CAR) 4E
Write the counter high byte 4F
Write the counter low byte 4D
Write the RAM; then Increment the Counter 4C

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently incremented only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.
Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into CAR.

Bit 4 of the transporter status byte is the INT STATUS

(interrupt status) and is set upon completion of each
transporter command. This bit is cleared by reading port 4D.

THE UNIVERSAL BUFFERED TRANSPORTER
The Universal Buffered Transporter (UBT) is a basic buffered

transporter upon which many buffered transporters for
specific microcomputers are built.

Corvus Systems 243

Mass Storage Systems GTI The Univeral Buffered Transporter

There is no DMA overrun detection circuitry on board the UBT
and in fact no overrun detection circuitry on any buffered
transporter. Buffered transporters perform their DMA
operations on the buffer RAM which by design is sufficiently
fast that no overruns can occur.

The UBT does not support interrupts and there is no boot ROM
on board.

All processor read and write operations from and to the UBT
take place through I/0 ports. The two least significant port
address bits for each operation are determined by the UBT.
The upper 6 port address bits are defined by host-dependent
circuitry.

The following is a list of the possible processor actions and
the I/0 ports to which they should be directed. 1In the
table, "n" represents the upper six bits of the port address.

Operation I/0 Port
Read Transporter Status Byte n3
Read RAM n2
Read RAM; then Increase the Counter by 1 no
Write to the CAR n2
Write the Counter High Byte n3
Write the Counter Low Byte nl
Write to RAM; then Increase the Counter by 1 no

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.
Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

THE Z-80 ENGINEERING TRANSPORTER

The Z-80 transporter is a normal DMA transporter which does
not support interrupts. There is no boot ROM on board the
2-80 transporter but there is limited DMA overrun detection
circuitry.

The command address register on the Z-80 card lies at I/0

address F8. Command vector address bytes must be written
to this address.

Corvus Systems

244

Mass Storage Systems GTI The Z-80 Engineering Transporter

The status port of the 2Z-80 card lies at I/0 address F9.

Bit 4 of this byte is the transporter READY line. Bit 4 high
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR.

THE IBM PC-JR. TRANSPORTER

The IBM PC-Jr. transporter is a buffered transporter which
does not support interrupts. There is a boot ROM on board
which extends from host CPU address DF000 to address E0000.
The ROM utilizes the first 1024 bytes of the 4K buffer RAM
and must have exclusive use of this area. The host should
not place command vectors or other command information in
this section of this buffer.

All processor read and write operations from and to the
PC-Jr. transporter take place through the I/0O ports. The
following is a list of the possible processor actions and
the I/0 ports to which they should be directed.

Operation I/0 Port HEX
Read Transporter Status Byte 3F8
Read RAM 3F9
Read RAM; then Increase the Counter by 1 3FB
Write to the CAR 3F9
Write the Counter High Byte 3F8
Write the Counter Low Byte 3FA

Write to RAM; then Increase the Counter by 1 3FB

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.
Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

THE Z-100 TRANSPORTER

The 2-100 transporter is a normal DMA transporter which
supports interrupts. It is possible, using the jumpers and
exposed pins on the Z-100 card, to select the level at which
interrupts will arrive. For details see the Z-100
Installation and Programming Guide.

Corvus Systenms 245

Mass Storage Systems GTI The Z-100 Transporter

Oonce an interrupt arrives it is necessary for the interrupt
handler software to reset the interrupt mechanism before
returning control to the interrupted program. The interrupt
is reset by writing to the Reset Interrupt Register at I/0
port FB. The contents of the write are unimportant. If the
interrupt is not reset, it will be impossible for the
transporter to interrupt the processor again.

The 2-100 transporter has the facility to support an onboard
boot ROM at IC location 7, but Corvus Systems does not supply
a ROM. A user installed ROM is addressed using the phantom
scheme to overlay an area of memory. The user selects this
address space by using jumpers E2 through E5. The chart
below shows how to select the phantom address.

Memory Address Bit 15 14 13 12 11-0

Jumper E3 E4 E2 ES No Jumper

Default (0XXX) (] 0 0 0 X
jumper A-B = bit low jumper A-C = bit high

For more information on how to access an onboard ROM, see the
Z-100 Installation and Programming Guide.

The command address register on the 2-100 card lies at I/O
address 5A. Command vector address bytes must be written to
this address.

The status port of the Z-100 card also lies at I/O address
SA. The reason that this does not create confusion is that
the host only writes to the CAR and only reads from the
status port. The read/write line from the CPU determines
which register is attached to the data lines.

Bit 0 of the status byte is the transporter READY line. Bit
0 high indicates that the transporter is ready to accept the
next byte of the command vector address into the CAR.

The 2Z-100 transporter card includes DMA overrun detection
circuitry.

THE RAINBOW TRANSPORTER

The Rainbow Transporter is of unbuffered type with no
underrun/overrun support. This means that most communication
with the transporter is done via DMA. A DMA cycle is
guaranteed to start within 3.5 microseconds from a request so
over/under run will never happen. The host passes command

Corvus Systems ‘ 246

Mass Storage Systems GTI The Rainbow Transporter

addresses, controls.interrupts and RESET with the help of 2
I/0 registers (address 22H-23H).

bit 1 bit 1 bit 0

RDY | | RESET | 1IE

22H | | |

23H

RDY - Transporter ready to accept one byte of a command
address. (For restrictions see the Omninet Technical
Reference Manual). Read only bit. Write operation
does not have any effect on this bit.

IE - Interrupt enable. When set (=1) the transporter will
interrupt the host as described in the Omninet
Technical Reference Manual. It is cleared by reading
in the CAR register. This bit is cleared on power up.

CAR - Command address register. For each Omninet command a
three byte address is passed in this register (MSB
first). Reading this register will clear interrupt
requests.

RESET -~ When set, the RESET line to the generic transporter
is held low and pending interrupts are cleared. This
bit is cleared on power up. Interrupts must not be
enabled until 50 micorseconds after reset cycle has
been completed.

Interrupts

The Transporter supports the DMA Controller Interrupt
normally used by the extended communication option. The
interrupt is of type 23H and uses interrupt vector 3CH. An
interrupt request is cleared by reading the CAR (address
23H).

Corvus Systens 247

Mass Storage Systems GTI 1SI-11 Transporter

L8I-11 TRANSPORTER
Jumpers And Switches

The LSI-11 OMNINET interface board, called a transporter, contains
jumpers to select the LSI-1l control and status register (CSR)
address, the interrupt vector address, and interrupt priority.
There is also a jumper to enable/disable the bootstrap.

The transporter contains a Dip switch with eight microswitches.
Microswitches 1-6 are used to set the unigque OMNINET device address.

Microswitch number 7 is used to set a bias offset on the OMNINET
cable to reduce the effect of noise on the line when it is idle.
Exactly one device on the network should have this switch set on.

Microswitch number 8 is reserved for network termination. Nor-
mally, switch 8 is off for all transporters because terminators are
physically installed at both ends of the network.

Bootstrap

The transporter board has a 256 word bootstrap area with a starting
address of 773000. The bootstrap sockets accept two 256 x 8 proms
compatible with MMI 6309-1J or TI 74S471. Location U23 contains the
low order bytes and location Ul6é contains the high order bytes of the
bootstrap code. When shipped, the bootstrap is enabled and contains
the boot code for a DEC RLOl disk drive or the Corvus RLOl compatible
disk system. The bootstrap can be disabled by removing the jumper
between pins J8 and J13.

Device Address

The transporter hardware has support for a 20-bit address; However, an
18-bit address is normally used with Q-bus devices. The transporter
contains jumpers to select bit 3 to bit 12 of the device CSR address.
Pins used to set the CSR address are J1-J6 and J9-J12. Pin J7 is used
as a ground. A jumper installed from an address pin to the ground pin
results in a zero for that bit of the device address. Since there is
a single ground pin, the jumpers are installed in a daisy-chained
fashion. The CSR device address is preset to 766000 as shown in the
chart that follows:

Corvus Systens 248

Mass Storage Systems GTI LSI-11 Transporter

Bit 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
Pin 1 1 1 1l 1 J1 J2 J3 J4 J5 J6 J9 J10 J11 Ji2 0 0
766000 1 1l 1l 1l 1l 0 1l 1l 0 0 0 0 0 0 0 0 0

Bit 17-13 are implied ones and bits 2-0 are implied zeroes. To create
the preset device address of 766000, pins J1 and J4-J12 must be jumped to
the ground pin J7. This can be performed with the following Jjumpers:
J1-J4, J4-J35, J5-3J6, J6-J37, J9-J10, J10-J1l1l, J1ll~-J1l2, and J12-J7.

Programming Guide

Chapter three of the Omninet Loca rea Network Genera chnical
Information Guide describes the commands that can be used with
the transporter. The LSI-11 communicates with the transporter by
first formatting a command control bleck and then sending the
command control block address tq the transporter through the use
of two control registers. When the command is completed, a
return code is placed in the result record address as specified
in the command control block. An interrupt is generated when the
operation is completed. For a detailed description of commands,
control block formats, and return codes see Chapter three

CSR - Control And Btatus Register

The Control and Status Register (CSR) is a 16-bit register with a
standard address of 766000. All bits can be read or written.

Bit 0-6 Not used
Bit 7 Interrupt Enable (IE)

This bit is set to 1 upon power up and hardware reset. If this bit is
cleared, the transporter cannot interrupt the processor.

Bit 8-14 Not used

Bit 15 Transporter Ready (RDY)

When set, this bit indicates the transporter is ready to receive the
next address byte of the three byte command control block address.

This bit is cleared when a byte is moved into the Command Address
Register (CAR).

Corvus Systems 249

Mass Storage Systems GTI LSI-11 Transporter

CAR - Command Address Register

The Command Address Register (CAR) is a 16-bit write-only register
with a standard address of 7660002.

Bit 0-7 Command Address Byte

To issue a command to the transporter, the three byte address of the
command control block must be given to the transporter one byte at a
time. Every time an address byte is placed into the CAR, the RDY bit
of the CSR goes low and the next byte cannot be sent until the RDY bit
returns high again. The three byte address is sent with the most
significant byte first.

Bit 8-15 Not used

S8oftware Notes

While the transporter is receiving a packet from the network, it will
not process a byte moved into the CAR so the RDY bit of the CSR rema&ns
low until the transporter can process the next byte. This leads to
situation where a software I/0O driver may have to wait up to several
milliseconds before the RDY goes high again. Since the transporter
processes one command at a time, the computer should not place any
additonal data into the CAR after it has issued a command, until the
command has completed as indicated by the command return code.

Interrupts

An operation complete interrupt is generated after the completion of
each command issued to the transporter. Before the interrupt is
generated, a return code is placed in the address specified as the
result record address in the command control block. Two interrupts
are generated for a valid setup receive command. The first interrupt
indicates the command was accepted and the socket is setup to receive
a message. The second interrupt occurs when a message is received.
The program should initialize the return code byte in the result record
to hex SFF before the command code block is sent to the transporter.
When a transporter interrupt occurs, the program must check the return
code value of each active transporter command to determine which oper-
ation has just completed.

Byte Order
All OMNINET addresses and lengths must be specified with the most

significant byte first and the least significant byte last. Addi-
tionally, some addresses and lengths are not on word boundaries.

Corvus Systems 250

Mass Storage Systems GTI

LSI-11l II Transporter

' :"ﬁble::"

1 .

- T A8

fco_pncctoz

: |pip switch J‘lﬂ g

’

J8

1 .92
1 a6
35

Jé
J3

J

00000O0DO.

o
[7]
-
w

o Jl2
o Jll
o Jl0
c J9

Figure D.1l:

Corvus Systens

L8I-11 Transporter Board
Jumper Locations

.
< h

C e m—— —— ——

251

Mass Storage Systems GTI LSI-11 Transporter

This page intentionally left blank.

Corvus Systems 252

Mass Storage Systems GTI Flat Cable Interface

CORVUS FLAT CABLE

INTERFACE CARDS E

This appendix describes the flat.cable interface provided by
Corvus. It contains a table describing the flat cable interface
cards, and gives listings of sample interface routines.

The table on the next page describes the flat cable interface
cards provided by Corvus or other developers. See Appendix A
for a description of the flat cable signal assignments,
including READY and DIRC.

For each interface card, the table contains the following
information:

1. The processor type (280, 8080, 6502, 8088, 8086).

2. Whether the I/O is memory mapped or through I/O ports.

3. The data port or memory address.

4. The status port or memory address.

5. Which bit (bit 7 is msb) of the status port is the
READY line, and the value for READY.

6. Which bit of the status port is the DIRC line, and the
value for Host-to-Drive.

7. Additional notes are given below.

Notes:

(1) Ccard contains space for a 2k PROM; card must be in slot 6

(2) Must output 1 to bit 6 of port OECh first

(3) Same card as TRS-80 I, except jumpered.

(4) Contains space for a PROM;
bit 2 - auto boot switch, bit 7 - power on

(5) Complex strobe.

(6) Complex bus direction control

(7) Card contains space for a 4k PROM

(8) Interface is through game ports 3 and 4.

(9) Not a Corvus product. The Alspa card was developed by
Alspa; the LNW80 card was developed by an independent
developer; the Magnolia z-89 was developed by Magnolia
Microsystens.

Corvus Systems 253

Mass Storage Systems GTI

1.

Pro-

2.

| |cessor| I/0

Flat Cable Interface

| 3. | 4. | 5. | 6. | 7.
| Data | status |Ready |H=t-D |
| Port | Port |Status|Status|

| Address | Address |bit #/|bit#/ |

Computer || Type | Type | Hex/Dec | Hex/Dec |value |value |Notes
T Zeo 1 1ro | Dohy206 | D2h/210 1 0/3 1 /1 1(5,9)
aitos 11 zeo | /o | sin/12s | Boh/1ze | /0 1 1/0 |
aearl soosooll esos 11U e
rcie1r 11 es0s | Mem | GoEon/ | CoEh/ | 7/0 | 6/0 [(1)
|| | 49376 | 49377 | 1
bee malnbon 11 8088 | /0 1 20n/ 32 1 23h/ 33 1 070 1 1/1 |
bre mosin 11 780 | 170 | DERy222 | DFR/223 | 0/0 | 1/1 |
s pe 11 Tsoss 1 10 | 2EEh/750] 2EFR/751] 0/0 | 1/1 (1)
Tveo T 780 | Mem | Fains | F780m/ | 0/0 | 1/0 1(3,9)
Maamoiia 7-3911 780 1 170 1 59h/ 85 | 58h/ 88 | 0/0 | 1/0 [(4,9)
v T zee 1 T1/a | sin/ize | son/ize 1 o/ 1 /0 |
oopormeom1 11 ze0 1 Mem 1 (3 1 (3 16/0 17/1 I(5)
sTio0. zso 11 80s0.| 1/0 | DEhyz22 | DFhs223 | 0/0 | 1/1 |
ripoff || 280 | | | | |
Sony Smo—7o 11 280 1 3o | 4shy 72 1 4shy 73 1 070 | 1/1 |
supersrain 11 260 | 170 | ain/1zs | soh/ize | 0/0 | 1/0 |
s s T\1zeo | Wem | aveins | 3780hy | 070 | /0 |
11 | 14209 | 14208 | i |
zmomso 1111 Zs0 1 10 | DERy2zz | DFn/223 1 070 | 1/1 |
zRe—so 11111 Zso 1 3o | DEny2zz | DFR/223 1 0/0 | /1 1(2)
yeron 2011 zs0 1 10 | osnse 1 osn/s | 0/0 | 1/1 I(6)
senitn mose 11 250 1 Zro | 7abyiz2 | 78R7123 1 070 1373 1
senien 20, 11 20 1 iso | 7Ehyize | 7eR/127 1 070 | /1 |
Zenith Z-100 || 8085 [| [

Corvus Systems

254

Mass Storage Systems GTI Flat Cable Routine For 6502

SAMPLE INTERFACE ROUTINE FOR 6502

WO VG VO T W Ve W VE Ve T Ve W We Ve W Ve We we W

This section describes the source for the machine language program known
as BCI. BCI stands for Basic Corvus Interface; this program is used by
the various Basic utilities to communicate with the Corvus drive. The
function of this program is to send one command to the Corvus interface,
and then wait for a reply. The parameters to BCI are used both as input
(i.e., the length and command are passed in), and output (i.e., the lengt
and result bytes of the reply are passed back in the input locations).

Parameters to BCI are:

Length of command - this parameter is a word, and is passed
in locations 300,301 (hex; least significant byte first).
Length must always be greater than 0.

Address of buffer containing command - this parameter is a word,
and is passed in locations 302,303 (hex; least significant byte
is first).

Entry point to BCI is 304 (hex).

BCI is NOT relocatable; it loads at 300 (hex).
Uses the DMA buffer address location at 48,49 (hex)
Absumes that the CORVUS card is in slot 6.

-ABSOLUTE
-TITLE "BCI Copyright 1981, All rights reserved, Corvus Systems, I
«PROC BCI

LEN «EQU 0300 ¢/ length of command

BUF .EQU 0302 ; address of data buffer containing command

RENBL -EQU 0COE2
STATUS .EQU O0COEl
DATA «.EQU O0COEO
DMABUF .EQU 48

read strobe

status byte
input/output line
DMA buffer location

.o wo w9 wo

START «ORG 0304

“e

[
’

LDA RENBL : enable read strobe
initialize byte count, DMA index

LDA BUF

STA DMABUF
LDA BUF+1
STA DMABUF+1
LDY 40

send command to drive

LDX LEN

BNE STEST1
OUTL DEC LEN+1 ; count down upper byte of length
STEST1 BIT STATUS ; wait for drive to be ready

BMI STEST1

Corvus Systems 255

Mass Storage Systems GTI Flat Cable Routine For 6502

LDA @DMABUF,Y ; send byte to drive
STA DATA
INY get next byte
BNE NEXT1 : check for 256 byte rollover
INC DMABUF+1
NEXT1 DEX
BNE STEST1
LDA LEN+1
BNE OUTL

“e

; done with sending command, now wait for line to turn around

TEST2 BIT STATUS read status bit

H

BVC TEST2 : wait for bus to turn around

BMI TEST2 ; wait for "ready" bit

LDY #10 ; delay loop to avoid "ready" glitch
LOOP1 DEY

BNE LOOP1l

BIT STATUS : check it again, just to be sure

BVC TEST2

BMI TEST2

: now receive the result

LDA #0

STA LEN

STA LEN+1
LDA BUF

STA DMABUF
LDA BUF+1
STA DMABUF+1

initialize returned byte count

-e

reset DMA address

«s

STEST3 BIT STATUS

BVC DONE ; exit if "host to drive"

BMI STEST3

LDA DATA : read byte from controller
STA @DMABUF,Y ; save in memory buffer

INY

BNE STEST3 ; check for 256 byte rollover
INC DMABUF+1

BNE STEST3 ; keep looping until exit

compute address of end of received data+l, then subtract starting address
to get total number of bytes received

-e ™8

DONE TYA
CLC
ADC DMABUF
PHA
LDA DMABUF+1

Corvus Systems 256

Mass Storage Systems GTI Flat Cable Routine For 6502

ADC #0

STA DMABUF+1
PLA

SEC

SBC BUF

STA LEN

LDA DMABUF+1
SBC BUF+1
STA LEN+1
RTS

«END

Corvus Systens 257

Mass Storage Systems GTI Flat Cable Routine For 8080/280

SAMPLE INTERFACE ROUTINE 8080/280

.
’
.
’
.
’
°
’
.
’
.
’
°
’
.
!
.
’
.
’
.
?
.
’
.
’
.
’
.
’
H
.
’
.
’
.
’
.
’
°
’
.
’
.
’
°
’
.
’
°
’
°
’
.
’
[
’
.
’
[
’
*
’
°
’
o
’
.
'

e W We W “o

’
H89
HRD
SB
ALTOS

=== UTILITY DRIVER FOR CORVUS CP/M PROGRAMS WITH PASCAL MT+ ===

using the FLAT CABLE interface cards
(MICROSOFT M80 ASSEMBLER FORMAT)

BY KO & BRK

THIS UNIT IMPLEMENTS 3 SUPPORT PROCEDURES AND FUNCTIONS
FOR PASCAL MT+ @

INITIO - init corvus drivers and return "bios" pointer
SEND - gend data to corvus drive
RECV - receive data from corvus driver

THESE ARE EXPLAINED BELOW:
function INITIO

Calling the function does some initialization of the
driver. This function MUST be called once and only once
before any use of the SEND or RECV routines is attempted.

FOR SEND AND RECV THE CALLING PROCEDURE IN PASCAL IS:
SEND (VAR st : LONGSTRING)

The first two bytes of the string are the length

of the string to be sent or the length of the

string received. Typically one first uses SEND

to send a string to the drive then follows this with a RECV
command to get back any returned data from the CORVUS drive.

NOTE: These drivers are not necessarily implemented in the
fastest or most direct way. The MT+ programs are
so slow that speed here is not the overriding concern.

----3’-==='-========-.-=“---BS.SB==“‘"‘Bﬂ‘==='=ﬂ‘===============

public INITIO, RECV, SEND
.8080 ;18080 opcodes

==-= SYSTEM TYPE DESIGNATORS =---

EQU 1l ¢ 2ZENITH H89 SYSTEM

EQU 2 : H89 R&D VERSION

EQU 3 ; SUPERBRAIN SYSTEM

EQU 3 : ALTOS SYSTEM DESIGNATOR

Corvus Systems 258

Mass Storage Systems GTI Flat Cable Routine For 8080/z80

§100 EQU 4 ¢ 8100 SYSTEM DESIGNATOR
TRS2 EQU 4 ¢ TRS-80 MODEL II DESIGNATOR
APPLE EQU 5 i APPLE CPM DESIGNATOR

XRX EQU 6 ¢ XEROX CPM DESIGNATOR
ALSPA EQU 7 ¢ ALSPA CPM DESIGNATOR
MAGNOLIA EQU 8 i MAGNOLIA Z-89 DESIGNATOR
oSl EQU 9 i OSBORNE O-1 DESIGNATOR
0SX1 EQU 10 ¢/ OLD EXPERIMENTAL OSBORNE VERSION
SNY70 EQU 11 i SONY SMC-70 DESIGNATOR
Zsl10 EQU 12 7 OLD Z100 WITH S-100 PORTS
281 EQU 13 ¢ ZENITH Z-100 DESIGNATOR
LNW80 EQU 14 ¢ LNW80 II DESIGNATOR

w== SPECIFY SYSTEM TYPE HERE USING ABOVE DESIGNATORS m==

ys EQU zs81 ; Designates sys

=== SETUP EQUATES BASED UPON ABOVE DESIGNATOR CHOICE ==-

wo %0 %o %o) vo wo e we

OS1T EQU sys EQ OSl OR sys EQ OSX1 ¢ true if OSBORNE

2S81T EQU sys EQ ZS10 OR sys EQ 281 ; true if z-100

.
’

if sys EQ H89 IF SYSTEM IS H89 THEN

[
DATA EQU 07AH ¢ Controller data I/O port
STAT EQU 07BH i Controller status port
HTDRDY EQU 2 ; Host-To-Drive , Drive Ready status
DTHRDY EQU 0 ; Drive-to-Host , Drive Ready status
endif
’
if sys EQ HRD ; for H89 R&D INTERFACE
DATA EQU OD1H H
STAT EQU ODOH H
HTDRDY EQU 0 H
DTHRDY EQU 2 H
endif

[
’

if sys EQ MAGNOLIA ; IF SYSTEM IS MAGNOLIA Z-89

DATA EQU 059H i DATA INPUT PORT
STAT EQU 058H s STATUS INPUT PORT
HTDRDY EQU 0 H
DTHRDY EQU 2 H

endif
’

if sys EQ SB OR sys EQ ALTOS ; IF SYSTEM IS SUPERBRAIN OR ALTOS
DATA EQU 081H s DATA INPUT PORT
STAT EQU 080H 3 STATUS INPUT PORT
HTDRDY EQU 0 H
DTHRDY EQU 2 H

endif

“e

Corvus Systems | 259

Mass Storage Systems GTI Flat Cable Routine For 8080/280

if sys EQ S100 for S100 type syss

’
STAT EQU ODFH H
DATA EQU ODEH H
HTDRDY EQU 2 H
DTHRDY EQU 0 H
endif
’
if sys EQ ALSPA; IF SYSTEM IS ALSPA THEN
DATA EQU ODOH H
STAT EQU OD2H H
HTDRDY EQU 3 : Host-To-Drive , Drive Ready status
DTHRDY EQU 1l H
’
COMDD EQU OD3H ;s COMMAND PORT
MODI EQU 93H
MODO EQU 83H
endif
’
if sys EQ XRX ; XEROX 820 equates
DATA EQU 08H H
PDATA EQU 09H ; Control of data port
STAT EQU OAH ; status port
PSTAT EQU OBH ; Control of status port
’
HTDRDY EQU 02H ; Host-To-Drive & Drive Ready status
DTHRDY EQU OH : Drive-To-Host & Drive Ready status
H
OTMODE EQU OFH ; PIO output mode
INMODE EQU 4FH : PIP input mode
CTLMODE EQU OCFH : PIO bit control mode
CTLMASK EQU OFH : mask for PIO when in CTLMODE
NOINT EQU 7H ; disable PIO interupts
’
OTDIS EQU 30H ; interface output mode, strobes disabled
INDIS EQU 10H ; interface input mode, strobes disabled
OTEN EQU 20H ; interface output mode, strobes enabled
INEN EQU OH ; interface input mode, strobes enabled
endif

if sys NE APPLE AND NOT OS1T

DRDY EQU 1l : MASK FOR DRIVE READY BIT
DIFAC EQU 2 : MASK FOR DRIVE ACTIVE BIT
endif
’
if sys EQ APPLE ;Apple CP/M equates (Corvus card in slot #6))
DATA EQU OEOEOH ;I/O data pointer
STAT EQU OEOE1H ; I/O status pointer
DRDY EQU 080H ;Status -- Data ready flag
DIFAC EQU 040H ;Status -- Active flag
HTDRDY EQU 0 ;Host-To-Drive ReaDY status
DTHRDY EQU 040H :Drive-To-Host ReaDY status
’
2$PU EQU OF3DEh ;Pointer to SoftcCard

Corvus Systems 260

Mass Storage Systems GTI Flat Cable Routine For 8080/280

ASVEC EQU OF3DOh ;Pointer to 6502 subroutine address
ASACC EQU OF045h ;Pointer to 6502 A register
CWRIT6 EQU OFBAh 76502 write data byte subr address
CREAD6 EQU OFC9h 16502 read data byte subr address

endif
H

if sys EQ 0S1 OR 8ys EQ OSX1l ¢ if OSBORNE 0-1
H
ADATA EQU 2900H i PORT A DATA/DIRECTION CONTROL
CTLA EQU 2901H ¢+ PORT A REGISTER SELECT
BDATA EQU 2902H ¢/ PORT B DATA/DIRECTION CONTROL
CTLB EQU 2903H i PORT B REGISTER SELECT
H
STAT EQU BDATA ¢ STATUS I/0 PORT
DATA EQU ADATA ¢ DATA I/O PORT

endif

N
’

if sys EQ 0s1 standard Corvus OSBORNE version

’
HTDRDY EQU 80H i Host-to-drive, ready status
DTHRDY EQU (o] ¢ Drive=-to-host
DRDY EQU 40H ¢ MASK FOR DRIVE READY BIT
DIFAC EQU 80H ¢ MASK FOR DRIVE ACTIVE BIT
endif
’
if sys EQ 0SXl1l ; old Corvus experimental Osborne version
HTDRDY EQU O00H i Host-to-drive, ready status
DTHRDY EQU 40H ¢ Drive-to-host
DRDY EQU 80H ¢ MASK FOR DRIVE READY BIT
DIFAC EQU 40H ¢ MASK FOR DRIVE ACTIVE BIT
endif
H
if sys EQ SNY70 ; for SONY SMC-70
STAT EQU 049H H
DATA EQU 048H H
HTDRDY EQU 2 H
DTHRDY EQU 0o H
endif

“e

if sys EQ 2510 ; for 2ENITH 2-100 with S-100 ports

’

STAT EQU ODFH H (this only worked on OLD 2-100's)
DATA EQU ODEH H
HTDRDY EQU 2 H
DTHRDY EQU 0 H

endif
[

if sys EQ 251 ; for ZENITH 2-100 (std Corvus release)
STAT EQU O07FH H
DATA EQU O07EH H
HTDRDY EQU 2 H
DTHRDY EQU 0 H

endif

we

if sys EQ LNW80 ; for LNW80 (using TRS-80 model 1 interface)

Corvus Systems 261

Mass Storage Systems GTI Flat Cable Routine For 8080/Z80

STAT EQU OF780H ; MEMORY MAPPED PORT ADDRESS
DATA EQU OF781H
HTDRDY EQU 0 H
DTHRDY EQU 2 H
endif

—-- DEFINE MACROS FOR BASIC CORVUS OPERATIONS ===

INSTAT -- Get disk controller status subroutine

H
:
i
H
H
i
H
H
;
I

NSTAT MACRO ; macro to choose how to get status
if sys EQ APPLE OR sys EQ LNW80
LDA STAT ; Get status if memory mapped I/0
else
if os1T
CALL OSTAT ; Get status if Osborn
else
IN STAT : Get status if port I/O
endif
endif
ENDM ;Return

TSTIN -- Set Z-flag if status = "Drive-To-Host", "Drive Ready"

STIN MACRO ; macro for testing input status
if sys EQ XRX OR 0S1T ; if system is XEROX

; or OSBORNE

CALL SETIN set port direction

endif
INSTAT : get status
ANI DIFAC OR DRDY ; mask status bits
CPI DTHRDY ; set Z-flag if status is right
ENDM H

TSTOT -- Set Z-flag if status = "Host-To-Drive", "Drive Ready"

.a‘. - We

STOT MACRO
if sys EQ XRX OR OS1T
CALL SETOT

macro to test output status
if XEROX or OSBORNE system
set port direction

~e “e “e

endif
INSTAT ;get status
ANI DIFAC OR DRDY ;: mask status bits
CPI HTDRDY ; set 2-flag if status is right
ENDM H

o we

Corvus Systems 262

Mass Storage Systems GTI Flat Cable Routine For 8080/280

: INDATA -~ Get disk controller data subroutine
H (get a single byte back from controller)
’
INDATA MACRO ; macro to chose how to get data
if sys EQ APPLE
PUSH H :Save (H,L)
LXI H, CREAD6
iGet 6502 read subr address
CALL X6502 iRead data byte (6502)
POP H tRestore (H,L)
LDA ASACC ;Get data byte
else
if sys EQ ALSPA OR OS1T
CALL INACV
else
if sys EQ LNWS8O
LDA DATA
else
IN DATA
endif
endif
endif
ENDM sReturn
H
: OTDATA -- Put disk controller data subroutine
: (output a single byte passes in Acc)
OTDATA MACRO ¢ macro to chose how to output data
if sys EQ APPLE
STA ASACC sPut data byte
PUSH H :Save (H,L)
LXI H,CWRIT6 t1Get 6502 write subr address
CALL X6502 jWrite data byte (6502)
POP H iRestore (H,L)
else

if s8ys EQ ALSPA OR 0S1T
CALL OUTACV
else

if sys EQ LNW8O
STA DATA
else
ouT DATA
endif
endif
endif
ENDM sReturn

I osEa t 1 1 = T T S R I S S T S T S N S 0 N e s e g R e SN Gy 0 A T N = =

=-- DUMMY INITIALIZATION ENTRY IF NOT OSBORNE =--

we wo wo wo

Corvus Systems 263

Mass Storage Systems GTI Flat Cable Routine For 8080/Z80

if NOT 0OS1T : if not osborne
INITIO: RET ; DUMMY
endif
H
; =-=- RECEIVE BLOCK INTO BUFFER =--
RECV: POP H : get return address
XTHL ; put return addr back, get buf address
PUSH H ; save buf address
INX H ; point past length field in buf
INX H i
CALL TURN ; WAIT FOR BUSS TO TURN AROUND
MVI B, 15 H
CALL DELAY H
CALL TURN ; SECOND try to avoid glitches (mainly for mirror
MVI B, 15 i
CALL DELAY H
CALL GTBLK ; get block of bytes and put count on stack
POP B ; get count
POP H : get buf address
MOV M,C ; put lower byte of len field
INX H H
MOV M,B ; put upper byte of len field
RET ;
; === SEND block from buffer =---
’
SEND: POP H ; get ret addr
XTHL ; put ret addr back, get buf address
MOV Cc,M : BC is WTBLK length counter
INX H : load with len field of buffer
MOV B,M H
INX H ; HL points to bytes to send
CALL WTBLK ; write bytes to drive
RET H

“*e “o

if 281T ¢+ IF 2100
~== SPECIAL WTBLK ENTRY FOR Z-100 =-=--

-

i

WTBLK: MOV A,M : GET BYTE FROM MEMORY
CALL WAITOX ; SEND FIRST BYTE TO DRIVE
JMP WTBLK1 ; ENTER STANDARD LOOP
else
H
;s === WRITE A BLOCK OF DATA TO THE DISC =---
H
WTBLK:
endif
WTBLKL: MOV A,M GET BYTE FROM MEMORY

“e W

CALL WAITO output byte

Corvus Systens 264

Mass Storage Systems GTI Flat Cable Routine Foxr 8080/280

WTBLK1l: INX
DCX
MOV
ORA
JNZ
RET

> Wi

B

50

BLKL ; LOOP UNTIL DONE

’
; === GET A BLOCK OF UNDETERMINED LENGTH BACK FROM DISC ===
’
GTBLK: if sys EQ XRX OR OS1T ; if XEROX OR OSBORNE system
CALL SETIN H set port direction
endif
LXI D,0 ; set counter
GTBl: INSTAT ;s GET STATUS
MOV Cc,A ; SAVE IT
ANI DRDY ; TEST IF READY
CPI HTDRDY AND DTHRDY
JNZ GTBl : LOOP UNTIL READY
’
MOV A,C
ANI DIFAC OR DRDY : mask status bits
CPI HTDRDY : if "Host-To-Drive" & Ready
Jz GTB2 ; then jump out of loop
H
INDATA : GET DATA BYTE
MOV M,A ¢+ SAVE IT
INX H
INX D
JMP GTB1
H
GTB2: XCHG s GET COUNT IN (H,L)
XTHL ;s SAVE IT
PCHL t R
TURN
page
i
’
TURN: TSTIN ; Set 2-flag if "Drive-To-Host" & Ready
JINZ TURN ¢ loop if not
RET ;
’
DELAY: DCR B
JIJNZ DELAY
RET

WAITI: TSTIN Set Z-flag if DTHRDY

-e “o

JNZ WAITI LOOP UNTIL READY
i
INDATA ; READ BYTE FROM DISC
RET
H
if os1T : SPECIAL OSBORNE VERSION

WAITO: PUSH PSW

Corvus Systemns 265

Mass Storage Systems GTI Flat Cable Routine For 8080/Z80

CALL SETOT setup for output

—e we

WAITOl: EI enable ints
NOP
CALL OSTATX ; READ STATUS PORT
ANI DIFAC OR DRDY 7 MASK STATUS BYTE
CPI HTDRDY
JNZ WAITOl
H
POP PSW
CALL OUTACV ;s OUTPUT DATA
RET
endif
’
if sys NE SNY70 AND NOT ZS1T AND NOT OS1T AND sys NE LNW80
WAITO: PUSH PSW 1 SAVE COMMAND
WAITOl: TSTOT ; Set Z-flag if HTDRDY
JNZ
WAITOl : LOOP UNTIL READY
:
POP PSW
OTDATA + WRITE BYTE TO DISC
RET
endif

H
if sys EQ SNY70 OR ZS1T OR sys EQ LNW80
WAITO: PUSH PSW SAVE COMMAND

WAITOl: EI ENABLE INTERRUPTS FOR A SHORT TIME
NOP
NOP
DI s DISABLE INTERRUPTS FOR TEST
TSTOT ;{ Set Z-flag if HTDRDY
JNZ WAITO1l 7 LOOP UNTIL READY
’
POP PSW
OTDATA + WRITE BYTE TO DISC
EI ¢ RE-ENABLE INTERRUPTS
RET
endif

=== SPECIAL ROUTINE TO SEND FIRST BYTE FOR Z2-100 ===

we %o we wo

if zsaT
WAITOX: PUSH PSwW
WAITOX1: MVI A,l

IF Z-100
SAVE COMMAND

«e we

ouT OFEH ¢ ENABLE 8088 INTERRUPTS
i
EI ¢ ENABLE INTERRUPTS FOR A SHORT TIME
NOP
NOP
DI ¢ DISABLE INTERRUPTS FOR TEST
H
XRA A

Corvus Systems 266

Mass Storage Systems GTI Flat Cable Routine For 8080/280

ouT OFEH ¢+ DISABLE 8088 INTERRUPTS
H

TSTOT ; Set z-flag if HTDRDY

JNZ WAITOX1 : LOOP UNTIL READY
H

POP PSW

OTDATA ; WRITE BYTE TO DISC
:

MVI A,l

ouT OFEH ; ENABLE 8088 INTERRUPTS
H

EI i RE-ENABLE INTERRUPTS

RET

endif

=== SPECIAL APPLE SUPPORT ROUTINESE---

. “e “e w

if sys EQ APPLE
APPLE only .
X6502 =-- Call 6502 subroutine

D o e~

6502: SHLD ASVEC :Save 6502 subroutine address
LHLD Z$PU 1Get pointer to Z80 card
SHLD X651+1 1Save for 6502 call
X651 STA 0 1Execute 6502 subroutine
RET sReturn
endif

~== SPECIAL ZEROX 820 SUPPORT ROUTINES =---

e we we w¢

if sys EQ XRX
XEROX only

SETOT -- Set the port direction to out

U ~e ~o ~e ~o

ETOT: LDA DIRCTN ¢ Get the direction of previous i/o
CPI HTDRDY ; Was it "Host-To-Drive"
RZ ¢ return if it was
MVI A, HTDRDY ; get Host-To-Drive status
STA DIRCTN ; put it in i/o direction indicator
H
MVI A,OTMODE / program data channel to output mode
our PDATA H
H
MVI A,NOINT : no interrupts on data channel
ouT PDATA ;
H
MVI A,O0TDIS ; disable control channel
ouT STAT H
H
MVI A,CTLMODE i bit control mode on Status channel

Corvus Systems 267

Mass Storage Systems GTI

~e

U) ve ~o we =

ETIN:

-e -e -e

(e 1

IRCTN:

w8 we %o “o

’
OUTACV:

;\a -
>
2

ouT

MVI
ouT

MVI
ouT
RET

PSTAT

A,CTLMASK
PSTAT

A,OTEN
STAT

Flat Cable Routine For 8080/Z80

hi nibble out, lo nibble in

w-e weo

enable control channel

we we weo

SETIN -- Set port direction to in

LDA

CP1
RZ

MVI
STA

MVI
ouT

MVI
ouT

MVI
ouT

MVI
ouT
RET

DB
endif

DIRCTN
DTHRDY

A, DTHRDY
DIRCTN

A,O0TDIS
STAT

A, INMODE
PDATA

A,NOINT
PDATA

A,INEN
STAT

OFFH

if sys EQ ALSPA

PUSH
MVI
ouT
POP
ouT
MVI
ouT
DCR
OouT
RET

MVI

Corvus Systems

PSW

A ,MODO
COMDD
PSW
DATA
A,09H
COMDD
A
COMDD

e

-

A,MODI

-e

; get direction of last i/

test if it was "Drive-To-Host"
return if it was

get Drive-To-Host status

put it into i/o direction indicator

- we wo “o

weo weo

disable control channel

-e

-s

program data channel to input mode

«9 wo

no interrupts on data channel

enabel control channel
enable control channel

«e we weo

initialized to illegal value

=~== STROBE ROUTINES FOR ALSPA =---

EXCHANGE MODES

PUT DATA ON BUS
TOGGLE STROBE DOWN

TOGGLE STROBE UP

EXCHANGE MODES

268

Mass Storage Systems GTI Flat Cable Routine For 8080/Z80

ouT COMDD
MVI A,09H
ouT COMDD s TOGGLE STROBE DOWN
IN DATA : READ DATA FROM BUS
PUSH PSW s SAVE IT
MVI A,08H
ouT COMDD + TOGGLE STROBE UP
POP PSW
RET
’
endif

=== SPECIAL OSBORNE O-1 SUPPORT ROUTINES =--

«e we %o “o

if O0S1T : IF OSBORNE 0-1
;**
i * *
i THESE ROUTINES MUST BE ABOVE 4000H IN THE *
i* PROGRAM THEY ARE USED IN *
A *
;**
H
: === INITIALIZE DRIVER I/O ROUTINES AND HARDW. kel
H
INITIO: CALL LTEST s TEST IF CODE IS ABOVE 4000H

+ IF IT RET

RNS, DO INIT OF OSBORNE
JMP OSINIT

;
;3 === READ STATUS BYTE FROM CORVUS =--
i
o)

STAT: DI
ouT 0 : FLIP IN I/0 PAGE
LDA STAT s READ MEMORY MAPPED STATUS PORT
ouT 1 s FLIP IN STANDARD PAGE
EI
RET

’

OSTATX: DI
ouT 0 ; FLIP IN I/0 PAGE
LDA STAT : READ MEMORY MAPPED STATUS PORT
ouT 1 s FLIP IN STANDARD PAGE
RET ‘ s THIS VERSION LEAVES INTS. DISABLED

endif

-

if sys EQ OS1
~=- SETUP OSBORNE PIO AND CORVUS BOARD ===

’
’
OSINIT: DI
ouT 0 ; SWITCH TO ALTERNATE PAGE
MVI A,30H
STA CTLA : PORT A DIRECTION PROGRAMMING

Corvus Systems 269

Mass Storage Systems GTI

XRA
STA
MVI
STA
MVI
STA
MVI
STA
MVI
STA
MVI
STA
MVI
STa
ouT
EI

RET

H
i
’
SETIN: LDA
CPI
RZ
MV
STA
DI
ouT
MVI
STA
XRA
STA
MVI
STA
MVI
STA
MVI
STA
ouT
EI
RET

ETOT: LDA
CPI
RZ
MVI
STA
DI
ouT
MVI
STA
MVI

Corvus Systems

-== SETUP DRIVERS FOR

A
ADATA
A,34H
CTLA

A,38H
CTLB

A,3FH
BDATA
A,3CH
CTLB

A,2BH
BDATA
A,3CH
CTLA

- s s -9 «e -9

“e wo

DIRCTN
DTHRDY

A, DTHRDY
DIRCTN

0
A,30H
CTLA
A
ADATA
A,3CH
CTLB
A,2BH
BDATA
A,3CH
CTLA
1

e

~e

1]

DIRCTN
HTDRDY

A, HTDRDY
DIRCTN

0

A,34H
CTLB H
A,2AH

Flat Cable Routine For 8080/Z80

SET PIO FOR INPUT

PORT A R/W, DISABLE CORVUS DRIVERS
PORT B DIRECTION PROGRAMMING

SET ALL BUT STATUS BITS FOR OUTPUT
PORT B R/W, CORVUS I/O TO INPUT
STROBES HIGH, IEEE DRIVERS TO INPUT

PORT A R/W, ENABLE DRIVERS
BACK TO NORMAL PAGE

DATA INPUT ===~

get direction of last i/o

test if it was "Drive-To-Host"
return if it was

get Drive-To-Host status

put it into i/o direction indicator

e W W %o %o

PORT A DIRECTION PROGRAMMING

SET PIO FOR INPUT

SET PORT B FOR R/W, CORVUS DRIVER TO INPUT
SET IEEE DRIVERS TO INPUT, STROBE HIGH

SET PORT A BACK TO R/W, ENABLE CORVUS DRIVER

=== SETUP DRIVERS FOR DATA OUTPUT =--

Get the direction of previous i/o
Was it "Host-To-Drive"

return if it was

get Host-To-Drive status

put it in i/o direction indicator

NG We e e %

CORVUS DRIVER TO OUTPUT

270

Mass Storage Systems GTI Flat Cable Routine For 8080/280

STA BDATA ; SET IEEE DRIVERS TO OUTPUT
MVI A,30H
STA CTLA i SELECT PORT A DIRECTION PROGRAMMING
MVI A,OFFH
STA ADATA ; SET PIO FOR OUTPUT
MVI A,3CH
STA CTLA ; PORT A R/W, ENABLE CORVUS DRIVERS
ouT 1
EI
RET
’
; === INPUT DATA BYTE FROM CORVUS CONTROLLER ==~
’
INACV: PUSH B
DI
ouUT 0
MVI A,OBH
STA BDATA ; TOGGLE STROBE LOW
LDA DATA ; GET DATA
CMA ; COMPENSATE FOR IEEE INVERTER
MOV c,Aa ; SAVE IT
MVI A,2BH
STA BDATA ; TOGGLE STROBE HIGH
MOV a,c
OUT 1
EI
POP B
RET

=== OUTPUT DATA BYTE TO CORVUS CONTROLLER ==~
UTACV: PUSH PSW

DI
ouT 0

CMA i COMPENSATE FOR IEEE INVERTER
STA DATA ; PUT IN PIO REGISTER
MVI A, 0AH
STA BDATA ¢+ TOGGLE STROBE LOW
MVI A,2AH

STA BDATA 7 TOGGLE STROBE HIGH
ouT 1
EI

POP PSW
RET

endif

=== SPECIAL OSBORNE O-1 ROUTINES (old scramble wire interface) ---

we wo we wo

if sys EQ 0SX1l ; if old experimental interface
=== SETUP OSBORNE PIO AND CORVUS BOARD ===

QO ~o e

SINIT: DI

Corvus Systems 271

Mass Storage Systems GTI Flat Cable Routine For 8080/2Z80

ouT 0 i SWITCH TO ALTERNATE PAGE
MVI A,4
STA CTLB i SET PORT B TO R/W
MVI A,3
STA BDATA : SET DRIVER AND STROBE LINES
XRA A
STA CTLB : PORT B DIRECTION SETUP
MVI A,27H
STA BDATA s SET DIRECTIONS
MVI A4
STA CTLB ; SET PORT B BACK TO R/W DATA
ouT 1 ;7 BACK TO NORMAL PAGE
EI
RET
’
¢ =--- SETUP DRIVERS FOR DATA INPUT =--
’
SETIN: LDA DIRCTN ; get direction of last i/o
CPI DTHRDY ; test if it was "Drive-To-Host"
R2Z ; return if it was
MVI A, DTHRDY : get Drive-To-Host status
STA DIRCTN ; put it into i/o direction indicator
DI
ouT 0
XRA A
STA CTLA s SELECT PORT A DIRECTION REGISTER
STA ADATA ;7 SET ALL BITS TO INPUT
MVI A,4
STA CTLA ; SET PORT A TO R/W DATA
MVI A,3
STA BDATA ; SET PORT A DRIVERS FOR INPUT
OouT 1
EI
RET
’
; === SETUP DRIVERS FOR DATA OUTPUT ==-
’
SETOT: LDA DIRCTN ; Get the direction of previous i/o
CPI HTDRDY ; Was it "Host-To-Drive"
RZ ; return if it was
MVI A, HTDRDY : get Host-To-Drive status
STA DIRCTN ; put it in i/0 direction indicator
DI
ouT 0
XRA A
STA CTLA ;s DIRECTION SETUP OF PORT A
MVI A,O0FFH
STA ADATA ;s SET ALL BITS TO OUTPUT
MVI A,4
STA CTLA : SET PORT A FOR R/W DATA
MVI A,2
STA BDATA :+ SET DRIVERS FOR OUTPUT
ouT 1

Corvus Systenms 272

Mass Storage Systems GTI Flat Cable Routine For 8080/280

EI
RET
12
i === INPUT DATA BYTE FROM CORVUS CONTROLLER ==~
’
INACV: PUSH B
DI
ouT 0 ¢ FLIP IN I/0 PAGE
MVI A,23H
STA BDATA s TOGGLE STROBE LOW
LDA DATA ¢+ GET DATA
CMA ¢ COMPENSATE FOR IEEE INVERTER
MOV C,A ; SAVE IT
MVI A,O03H
STA BDATA + TOGGLE STROBE HIGH
MOV A,C
ouT 1l + FLIP IN STANDARD PAGE
EI
POoP B
RET
’
¢ === OUTPUT DATA BYTE TO CORVUS CONTROLLER ==-=-
1
OUTACV: PUSH pPsSw
DI
ouT 0 s FLIP IN I/0 PAGE
CMA + COMPENSATE FOR IEEE INVERTER
STA DATA : PUT IN PIO REGISTER
MVI A,22H
STA BDATA ¢ TOGGLE STROBE LOW
MVI A,02H '
STA BDATA : TOGGLE STROBE HIGH
ouT 1l ;i FLIP IN STANDARD PAGE
EI
POP PSW
RET
endif
’
if osaT
DIRCTN: DB OFFH ¢ PORT DIRECTION FLAG (INIT TO ILLEGAL VALUE)
’
¢ === TEST IF CODE IS ABOVE 4000H AND EXIT WITH ERROR MESSAGE =—=-
’
LTEST: POP H s GET RETURN ADDRESS OFF STACK
PUSH H
MOV A,H s GET HIGH ADDRESS BYTE
CPI 40H ;s IS IS ABOVE 4000H?
RNC + YES, SO RETURN
LXI D,EMSG ; POINT TO ERROR MESSAGE
MVI c,9 ;7 CP/M LIST STRING COMMAND
CALL 5 ; DO IT
JMP 0 + EXIT PROGRAM

-e

Corvus Systems 273

Mass Storage Systems GTI Flat Cable Routine For 8080/280

EMSG: DB ODH, OAH,ODH, OAH
DB 07,"' ** OSBORNE DRIVERS ARE BELOW 4000H **',0DH, OAH, 'S
[
endif
H
H
END

Corvus Systems 274

Mass Storage Systems GTI Flat Cable Routine For 8086/8088

SAMPLE INTERFACE ROUTINE FOR 8086/8088

TITLE DRIVEIO

WO NG WO VO N Ve WG WO Ve WO VY Ve WO WO Ve VP Ve WO VO Ve Ve VO VY Ve Ve Ve VP Vo WE WE VO WY Ve WO VO WO Ve WP WO We We WE Ve We Ve W WY Wy We We

=== CORVUS/IBM DRIVE INTERFACE UNIT FOR MICROSOFT ====

PASCAL AND BASIC

VERSION 1.2 BY BRK
(MICROSOFT ASSEMBLER VERSION)

THIS UNIT IMPLEMENTS 5 PROCEDURES:
INITIO

CDRECV = DRVRECV
CDSEND = DRVSEND

NOTE: THIS INTERFACE UNIT NOW SUPPORTS BOTH PASCAL AND BASIC

BUT IT MUST BE RE-ASSEMBLED WITH THE APPROPRIATE SETTING
OF THE “LTYPE" EQUATE TO DO THIS FOR EACH LANGUAGE.

THE CALLING PROCEDURE IN PASCAL IS :
CDSEND (VAR st : longstring)
THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
OF THE STRING TO BE SENT OR THE LENGTH OF THE
STRING RECEIVED.
function INITIO : INTEGER
THE FUNCTION RETURNS A VALUE TO INDICATE THE STATUS OF
THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE

INDICATES THE I/0 WAS NOT SETUP AND THE CALLING PROGRAM
SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.

THE CALLING PROCEDURE BASIC IS :

CALL CDSEND (BS)
THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
OF THE STRING TO BE SENT OR THE LENGTH OF THE
STRING RECEIVED (I.E. LEFT$(BS$,2)).

CALL INITIO (A%)

THE FUNCTION RETURNS A VALUE TO INDICATE THE STATUS OF

Corvus Systems 275

Mass Storage Systems GTI Flat Cable Routine For 8086/8088

THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE
INDICATES THE I/0 WAS NOT SETUP AND THE CALLING PROGRAM
SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.

REVISION HISTORY

FIRST VERSION 10-05-82 BY BRK
11-01-82 improved turn around delay for mirror

05-16-83 merged Pascal and Basic versions

WG WO Ve Ve We Vs WY Ve W W Ve o
e o0 oo

’ ======--==“8=--:---:—--.n:a:---:s---cgss=====-------===-:--=

°
’

TRUE EQU OFFFFH

FALSE EQU 0

:

PASCAL EQU 1 ; LANGUAGE TYPE DESCRIPTOR

BASIC EQU 2 ¢ LANGUAGE TYPE DESCRIPTOR

H

i

LTYPE EQU PASCAL ; SET TO LANGUAGE TYPE TO BE USED WITH

i

REVB EQU 0 ; O IF REVA OR REVB DRIVE, 1 IF REVB DRIVE ONLY

i
{§ ===-== CORVUS EQUATES FOR IBM PC ====-

!
DATA EQU 2EEH

; DISC I/0 PORT #
STAT EQU 2EFH ; DISC STATUS PORT
DRDY EQU 1 ; MASK FOR DRIVE READY BIT
DIFAC EQU 2 ; MASK FOR BUS DIRECTION BIT

H

4

PGSEG SEGMENT 'CODE'
ASSUME CS:PGSEG

IF LTYPE EQ PASCAL
DB 'CORVUS/IBM PC FLAT CABLE PASCAL DRIVER AS OF 05-16-83'
ENDIF

H
IF LTYPE EQ BASIC
DB '*CORVUS/IBM PC FLAT CABLE BASIC DRIVER AS OF 05-16-83'
ENDIF

=== INITIALIZE CORVUS I/0 DRIVERS ===

THIS ROUTINE MUST BE CALLED

ONCE TO SETUP THE DRIVERS BEFORE
THEY ARE USED. IF THE ROUTINE DOES
ANYTHING THAT CAN ONLY BE DONE ONCE,

we e we We W We “e “we

Corvus Systems 276

Mass Storage Systems GTI Flat Cable Routine For 8086/8088

IT MUST DISABLE THIS SECTION SO THAT
AND ACCIDENTAL SECOND CALL WILL NOT
LOCK UP THE HARDWARE.

~e we wo wo

PUBLIC INITIO

’
INITIO PROC FAR

’

IF LTYPE EQ PASCAL
MoV AX,O ¢ RETURN A ZERO
RET
ENDIF
’
IF LTYPE EQ BASIC
PUSH BP
MOV BP,SP :
MoV BX,6 [BP] ; GET POINTER TO DATA "INTEGER"
MOV word ptr [BX],0 ; RETURN A ZERO
POP BP
RET 2
ENDIF

;
INITIO ENDP

-== RECEIVE A STRING OF BYTES FROM THE DRIVE =--

«e we wo e

PUBLIC CDRECV, DRVRECV
?
CDRECV PROC FAR

DRVRECV:
PUSH BP ; SAVE FRAME POINTER
MOV BP,SP ; SET NEW ONE
H
IF LTYPE EQ PASCAL
MOV DI,6 [BP] : GET ADDRESS OF STRING TO SAVE DATA IN
ENDIF
4
IF LTYPE EQ BASIC
MOV BX,6 [BP] : GET ADDRESS OF STRING DESCRIPTOR
INC BX
INC BX ¢ POINT TO STRING POINTER
MOV DI, [BX] : GET ADDRESS OF STRING TO SAVE DATA IN
ENDIF
H
PUSH ES
PUSH DI ; SAVE POINTER TO 'LENGTH'
INC DI ; POINT TO START OF DATA AREA
INC DI
H
MOV AX,DS
MOV ES,AX ; SET SEGMENT # FOR SAVING DATA
CLD ;7 SET TO AUTO-INCREMENT

Corvus Systems 277

Mass Storage Systems GTI

~-e

MOV

e we ws

TURN: IN

TEST
JNE
TEST

JNE

-

CALL

IN
TEST
JNE
TEST
JNE

CALL

“e

MOV

E-.

IN
TEST
JNE

<o

IN
TEST
JNE

-e

TEST
JNZ

-e

DEC
IN
INC
STOSB
INC
JMP

POP
POP
MOV
POP
RET
CDRECV ENDP

“-e we =

=== FANCY "MIRROR"

DX, STAT

AL,DX
AL,DIFAC
TURN
AL, DRDY
TURN

SDELAY

AL, DX
AL,DIFAC
TURN

AL, DRDY
TURN

SDELAY
cx,0

AL, DX
AL,DRDY
RLP

AL, DX
AL,DIFAC
RLPE

AL, DRDY
RLP

DX
AL, DX
DX

CX
RLP

DI
ES
[DI],CX
BP

2

PUBLIC CDSEND,

’
CDSEND PROC

Corvus ¢ystems

FAR

DRVSEND

.
’

we We e "o “o

-e

e %o “e

-e

-y we “o ~e

-e

“e

e We “we we “we “o

~e

e “o “

Flat Cable Routine For 8086/8088

POINT TO STATUS PORT

COMPATIBLE TURN ROUTINE ---

GET STATUS BYTE

LOOK AT BUSS DIRECTION
WAIT FOR “DRIVE TO HOST"
LOOK AT "READY STATUS"

IF NOT READY, KEEP LOOPING

WAIT A MOMENT
GET STATUS AGAIN

WAIT FOR “DRIVE TO HOST"
LOOK AT “READY STATUS"
WAIT FOR "READY

INIT LENGTH COUNT
GET STATUS BYTE
LOOP UNTIL READY

GET STATUS BYTE
TEST BUS DIRECTION
IF "HOST TO DRIVE", EXIT

TEST FOR 'READY'
DOUBLE CHECK THAT IT IS READY

POINT TO DATA PORT

GET DATA BYTE

POINT BACK TO STATUS PORT
STORE DATA BYTE IN DATA STRING
INCREMENT LENGTH COUNTER

LOOP UNTIL DONE

GET POINTER BACK TO LENGTH
SET LENGTH OF RETURNED STRING

GET FRAME POINTER BACK
CLEAR RETURN STACK

-=~ SEND STRING OF BYTES TO DRIVE =--

278

Mass Storage Systems GTI

DRVSEND:

~e

-

~e

-e

.
t
o)

WLPl:

;
ENDSND:

CDSEND

H
H
H
;
SDELAY

Corvus Systems

PUSH
MOV

IF
MOV
ENDIF

IF
MOV
INC
INC
MOV
ENDIF

MOV
JCX2Z

INC
INC
CLD

LODSB
CALL

INC
JMP

IN
TEST
JINZ
DEC
10DSB

IF
ouT
INC
LOOP
ENDIF

IF
ouT
LOOP
ENDIF

POP

RET
ENDP

PROC

BP
BP,SP

LTYPE EQ PASCAL
SI,6 [BP)]

LTYPE EQ BASIC
BX,6 [BP)
BX

BX
SI, [BX]

cX, [SI)
ENDSND

SI
SI

WAITO

DX
WLP1

AL,DX
AL, DRDY
WLP

DX

REVB-1
DX,AL
DX
WLP

REVB
DX,AL
WLPB

BP
2

=== SHORT DELAY ROUTINE =--

NEAR

e we weo

-e

e we

~e e ~e weo

e we

we weo

«e We We we %o

we We we we

- we w9

Flat Cable Routine For 8086/8088

SAVE FRAME POINTER
SET NEW ONE

GET ADDRESS OF STRING TO SEND

GET ADDRESS OF STRING DESCRIPTOR

POINT TO STRING POINTER
GET ADDRESS OF STRING TO SAVE DATA IN

GET STRING LENGTH
IF NULL STRING, JUST RETURN

POINT TO START OF DATA TO SEND
SET TO AUTO-INCREMENT

GET FIRST BYTE OF DATA
SEND FIRST BYTE USING INTERRUPT TEST

POINT TO STATUS PORT
ENTER COUNTING LOOP

READ STATUS BYTE

IS DRIVE READY FOR NEXT ACTION?

NO, SO KEEP LOOPING

POINT TO DATA PORT

YES, GET DATA BYTE FROM 'DMA' LOCATION

FOR REV A OR REV B DRIVES

SEND DATA BYTE TO DISC

POINT BACK TO STATUS PORT

LOOP UNTIL TRANSFER IS COMPLETE

FOR REV B DRIVES ONLY
SEND DATA BACK TO STATUS PORT
LOOP WITHOUT STATUS TEST

GET FRAME POINTER BACK
CLEAR RETURN STACK

279

Mass Storage Systems GTI Flat Cable Routine For 8086/8088

MOV CL,30 : SETUP FOR SHORT DELAY

DELAY: DEC CL ¢ LOOP UNTIL DONE
JNZ DELAY ; DELAY TO AVOID BUS TURN AROUND GLITCHES
RET

SDELAY ENDP

-== WAIT AND OUTPUT BYTE TO CONTROLLER =---
INTERRUPTS ARE SWITCHED HERE
TO AVOID PROBLEMS WITH
CONSTELLATION

o We e W “e %o

’
WAITO PROC NEAR

PUSH AX ;7 SAVE DATA BYTE
WAITOl: STI ; ALLOW INTERRUPTS

MOV DX, STAT ; POINT TO STATUS PORT

NOP : ADDITIONAL DELAY FOR INTERRUPT

CLI ; DISABLE INTERRUPTS

IN AL,DX : GET STATUS BYTE

TEST AL,DRDY ; IS DRIVE READY?

JNZ WAITOl s NO, SO LOOP

POP AX i GET DATA BACK

DEC DX ¢+ POINT TO DATA PORT

ouT DX,AL ¢+ OUTPUT BYTE

STI ¢ ALLOW INTERRUPTS

RET

WAITO ENDP

i

PGSEG ENDS
END

Corvus Systems 280

Mass Storage Systems GTI ROM Descriptions

ENTRY POINTS FOR APPLE II ROM

The routines in the Apple II flat cable ROM assume that the card
is in slot 6. (See Constellation Software General Technical
Information manual for more information.)

Address Function

c600h Boot

C6CFh RWTS

c68Dh Save warm boot image

C815h Read Corvus sector (256-byte read)
cslsh Write Corvus sector (256-byte write)

The following bytes identify the Corvus flat cable interface
card:

Address Contents
C600h A9h
C601h 20h
C602h A9h
C603h o0h
C604h ASh
C605h 03h
C606h A9h
C607h 3Ch

ENTRY POINTS FOR IBM-PC/TI ROM

Entry points are the same as those described for the Omninet
ROM.

Corvus Systems 281

Mass Storage Systems GTI ROM Descriptions

This page intentionally left blank.

Corvus Systems 282

Mass Storage Systems GTI Software developers Kits

MSDOS

I

BOFTWARE DEVELOPER'S |
INFORMATION | F

|

|

A Software Developer's diskette is available from Corvus
customer service. It contains the following files:

SEMA4.BAS

SEMA4.PAS
SEMA4.EXE

*PIPES.PAS
*PIPES.EXE

DRIVEC2.ASM
DRIVEC2.0BJ
BDRIVEC2.0BJ

DRIVEIO2.ASM
DRIVEIO2.0BJ
BDRVIO2.0BJ

ODRIVIO2.ASM
ODRIVIO2.0BJ
BODRVIO2.0BJ

Corvus Systems

An example program, written in Basic, which shows
how to send disk commands. It uses the semaphore
commands for the example. This program is meant
to be compiled with the Microsoft BASIC compiler.
It will NOT work with the Basic interpreter.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
semaphore commands for the example. The compiled
version was linked with DRIVEC2.0BJ.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
pipes commands for the example. The compiled
version was linked with DRIVEC2.0BJ.

This is the source for the machine language module
used to send drive commands. This version works
with MSDOS 1.0, 1.1, and 2.x; it works for both
flat cable and Omninet, because it calls the
Corvus disk driver to send the command. The OBJ
files provided are conditionally assembled for

MS Pascal and MS Basic compiler respectively.

This is the source for a machine language module
used to send drive commands via the flat cable
interface card. This version will work for the
IBM-PC and TI-PC; some I/0 port equates must be
changed for other interface cards. The OBJ files
provided are conditionally assembled for MS Pascal
and MS Basic compiler respectively.

This is the source for a machine language module
used to send drive commands via the Omninet
transporter. This version will work for the
IBM-PC and TI-PC. The OBJ files provided are

283

Mass Storage Systems GTI Software developers Kits

conditionally assembled for MS Pascal and MS Basic
compiler respectively.

IMPORTANT NOTE: The ODRIVIO2 routine may NOT be
used on a PC which has the Corvus Constellation II
driver installed.

*SEMA4ASM.ASM This is a machine language module which supports

*SEMA4ASM.OBJ the semaphore functions SemLock, SemUnlock, and
SemStatus. This version is written to interface
to Microsoft Pascal.

*PIPESASM.ASM This is a machine language module which supports

*PIPESASM.OBJ the pipes functions PipeOpRd, PipeOpWr, PipeRead,
PipeWrite, PipeClRd, PipeClWr, PipePurge, and
Pipestatus. This version is written to interface
to Microsoft Pascal.

* These files are not yet available.

Versions supported are:
IBM-PC MSDOS 1.0, 1.1, 2.0, 2.1
TI Professional MSDOS 1.25, 2.0
DEC Rainbow MSDOS
Zenith 2-100 MSDOS

Formats available are:

IBM-PC 8-sector single-sided

Corvus Systems 284

Mass Storage Systems GTI Software developers Kits

CP/M 80 CONSTELLATION II

The following files are contained on the standard distribution
floppies for Constellation II:

SEMA4.COM
SEMA4.PAS
SEMA4.CMD

CPMIO.DOC
CPMIO.ERL

An example program, written in Pascal MT+,
showing how to send disk commands. It uses the
semaphore commands as an example.

A document file describing the support services
provided by the driver interface unit CPMIO.ERL.

CP/M 86 CONSTELLATION II

The following files are contained on the standard distribution
floppies for Constellation II:

SEMA4 .CMD
SEMA4.PAS
SEMA4 .KMD

CPMIO86.DOC
CPMIO86.R86

Corvus Systems

An example program, written in Pascal MT86+,
showing how to send disk commands. It uses the
semaphore commands as an example.

A document file describing the support services
provided by the driver interface unit CPMIO86.R86.

285

Mass Storage Systems GTI Software developers Kits

CP/M 80 (Flat cable only; not Constellation II)

A Software Developer's diskette is available from Corvus
customer server. It contains the following files:

MIRROR.ASM Source for the Corvus Mirror program. Shows how
to send drive commands for flat cable interface.

CDIAGNOS.ASM Source for the Corvus CDIAGNOS program. Shows
how to send drive commands for flat cable
interface.

Versions supported are:

§-100

TRS 80 Model II
Zenith H-89, H-950
Xerox 820

Sony

Formats available are:

§-100 8" single-sided, single-density
Northstar 5 1/4"

Vector Graphics 5 1/4"

Zenith H-89

Zenith H-90
Xerox 820
Sony

Corvus Systens 286

Mass Storage Systems GTI Software developers Kits

APPLE PASCAL CONSTELLATION I

The following files are contained on the standard Apple floppies
for Constellation I:

CORVUS.LIBRARY Contains units for sending drive commands
(OMNISEND, DRIVEIO), using semaphores (SEMA4),
and using pipes (PIPES).

SPOOL.TEXT An example program showing how to use pipes.
SPOOL.CODE

SHARE.TEXT An example program showing how to use
SHARE.CODE semaphores.

APPLE DOS CONSTELLATION I

The following files are contained on the standard Apple floppies
for Constellation I:

BCI.OBJ A machine language interface for sending disk

OMNIBCI.OBJ commands.

SPOOL An Applesoft program showing how to use pipes.

SHARE An Applesoft program showing how to use
semaphores.

Corvus Systens 287

Mass Storage Systems GTI Index

This page intentionally left blank.

Corvur Systems 288

Mass Storage Systems GTI Index

INDEX

ACtive user table e 00000 e0s0cs s 00 0ce0eRCBROOOEDSNOOSOTCDE 41-42, 111-112
Active user table comMmMANAS .cccsscscccccsessocsccscccccacsne 34-41
add active ...l..l...'...‘..ll..........'.....I......... 34' 35
active user table @rrors .c.ceccsccsscccsscsscsccsccsacs 41, 229
delete active user (OmniDrive) ...ccccescescccscccccccse 34, 37
delete active user (Rev B/H drives) .cccccecccscccccscns 34, 36
delete active NnumMber ...ccecccecescsscscccscsrscccccccscans 34, 38
Find ACtiVe ..cceccessesscssccsssssscssssssessssccsscsncs 34, 39
read temp DlOCK cccsssssscccccssscccccccoscocsccsnssccsccs 34, 40
write temp DloCK ceceeescscccsssserasssncsscccocccncncns 34, 40

Bank

see The Bank

BOOt Commands oonoo-onocooooooo.ooooooooc.oooooooo.oo.-ccoa 42-44
bOOt Command ooncoo.ooooco‘oo'o-ooo'.oooooco--ooooc.-oooo 42-43
read DOOt DlOCK cceeecsssscccscssssossssnscscsscccscasnsne 42, 44

Boot command @YYOYS .ceccesvsesscscsscssrssosscsccosoacscsscccons 229

Boot number assignmentsccccccccccccsccsssssncssctnossens 223

Boot table 0.0.0..0...‘.0.l....l’.'..‘.....'.l...i.....OO.I... 45

constellation name lookup pProtoCOl .cceccceoccsccccccsnne 102-110
goodbye ..OOO...O....‘.G.........0............... 102, 107’ 111
hello u....'.l.........l....'0'0.....'0..0....... 102, 106' 111
my ID is.........0..Q..l.l......'l....l........'...t.. 102, 110
Where AYe YOU .cececesssccscssscrscsssscccccccascocsssos 102, 109
WhO AYE@ YOU cccesscsssssssscosvosscccccocccccnsssccces 102, 108

Constellation parameters ...cccecoecesccscccscsccoscnscccocs 69-71
see also polling parameters

Controller functions

see Disk commands

Daisy-chained Arivescceescescensccccconccncccorcccccses 196
Desp°°1er ..l'.......0...0.'.00.....0.CO..............'...... 187
Device parameters
omniDrive ‘......-..00.....0..'0..D.l.........l......ll..'. 209
Rev B series Arive .csoceeccccccsscsccssscssccssscocccsssnnccs 198
Revnparameters .0..0..0.0.....0.I..Q.I.Q................. 200
The Bank ...0...'0...‘......'.....0.0.......OIQ..'......... 218
Device read and write parameters for a disk driver 113-114
buffer ..0..0..'l..l...0......I".O..ll..........l’l......' 113
AeVicCe NUMDEY +sccecossscoosssaossssssnsscsssassnssssccnacss 113
numbey Of SECLOYS ccoeseesssoscsscscscrsoscssssossccccsscsscscee 113

Corvus Systems 289

Mass Storage Systems GTI Index

result code I I T Bc
sector numbers Sesecec ittt ittt ettt sceerasscsnccssasnssssss 113
Device types St s e es ettt sttt ettt etesesesescsnennsess 221-222
DIP Switches
OmniDrive R R I T T 211-212
Rev B series drive Setecesetcecrstststssrtacssesesseseses 199=200
Rev H series drive Seseserttcccatr et e eresesscsscsenssnness 201
The Bank'l.....l'00..........OID"......OI...0......... 65
Din COmmandS ...Otl'.'..tu.lc.l.o..ooo.c..'l.ll..l..'l..... 1-67
summary Of disk COMMANAS tivvvrenereeneoosesennnssnnes 3-4, 224
see also Active user table commands, Boot commands,
Echo command, Get drive parameters command,
Park the heads command, Pipe commands,
Prep Mode commands, Put Drive in prep mode,
Read-Write commands, and Semaphore commands
Disk driver IR I I B < IS 1 T
see also Flat cable driver, Omninet driver for new
disk server protocol, Omninet driver for old
disk server protocol, Disk server timeouts,
and Transporter timeouts
Disk flat cable interface SO0 0 000 veeserrss 0000000000000 202-205
cable connector description D T X ¢ 1-1

cablewire assignment ..lI.....I......................QC... 202

Disk servers Teesrsrresticetttetttttateettotarssncnsscnenses T, 75
algorithm for finding all servers on network ceceessseal03, 104
sequence of events after powering on server esesssesses 111-112

Disk server timeouts Steertttetescttsestecsesescesosenessall5=116

Driver initialization Seccesetctcetstarctresessestsetsensnscass 113

Dynamic file allocation Stescrccssertntrtrsessertsessssseccncss 168

Echo command .l.................ll.0......................0 49-50

omnibDrive Sirectrerecssecttrccctrtcncssecassees 65, 206-209, 231
Rev B/H series Arivecceeveieececennnnees 65, 194-198, 231
The BanklllllQ...I.'.‘O........l....... 65, 214-217
see also prep mode commands

Flat C&ble driver A A N N R X T T e 145-148
disk read I R T Y
diskwriteI.......ll...ll.l......‘l..l.....l'.. 147

Flat cable interface cards $srss sttt ecessssassssensess 253=-280
entry points for Apple II ROM tecceicertrtrrestsersesesnses 281
entry points for IBM-PC/TI ROM I I 1 - 3 |
sample interface routine for 6502 tectsessstrssssrsensss 255=-257
sample interface routine for 8080/280 teecssecessccesss 258-274
sample interface routine for 8086/8088 cssecsssenscsces 275-280
table describing all flat cable interface cards tecsessecce 254

Get drive parameters command sttt ettt ttsesrsecsencnnses 46

Corvus Systems 290

Mass Storage Systems GTI Index

Hardware description
omniDrive ® © 00 00 0 250000 0500000000 GO OOEDOLEOSEOSOSEELOSOSNEOE 205_206 231
Rev B/H series Arive ...iccieceeccnccrcorcssossnsscsns 194, 231
The BanNK ccccoceccrecsesossssossosnossssssssscscssssssscsscsssnse 213

Interleave faCtOr ..c.cccceccccssscstossosssssscssssscssasss 64-65
omniDrive ® 0 0060000000 00 00 0O S OB 0L O E OO 000N OOEO OO SN OIOOBLSIES 64
Rev B/H Beries Ariveccececccecsscsscsscssccsscsscscsscces 64
The Bank ¢ 0 0 5 0 008 00 00 0000000 L OO O S E OO 0O 0L 00O S0 O8O0 O OSSO 54' 64

LED's
omniDrive @ & 00 0000000000000 0680000606 06606006060600006690 060000900 210' 231
Rev B series dAriveccceevececccecescscccscecsss 198=-199, 231
RevHseries drive ® 0 0 6 0 0. 0 6 05 SO DSOS O OO OO OO OO NN OEOS S PSEEONODS 200’ 231
The Bank ® ® 0 0 6 0 0 0 000000 OV SOOI S OO SO0 00O NGO SO OSBGOSR COEODNOS 218-219

Logical sector address decoding ..ceeeeeecccsccesescscacsees 11=12
omniDrive ® © 0 0 0 ¢ 00005 O P OO 0O OO O OO S E OO E O OO0 OG0 S0 S S 0O SO CO QSO BIOOOS 11
Rev B/H series Arive ..c.eceecestesccosossccsoccsssoscsssseses 11
The Bank LI I I I I S B IR B BN B I I Y I RN B BN T R Y Y B B B R BN I R R N R R N N A R R NN I N N R N) 11

Long comands ® ® 6 5 006000006000 00600 008800 0000000000 0° 00O 0O OGS EECEESOES 76-77
sending a long COMMANA .iecvssocsssossscocssnscsssscscscecsee BO=87

see also Omninet driver for new disk server protocol,

and Omninet driver for old disk server protocol

Mail packages @ 0 0 065600 2000000000000 000000 S OLOEIOSOOLIOEOSOIOSESIOSIDSTOSOES 186 187
Multiplexer ® @ 000 6 60 0 00 0090000 O OO ONE O OOV OOCOEOEEOSDS O OCEOEOSES BSOS 69-70 196
Multiple servers ® © 0 000 0 00 0000000 O SO O N OO OO OO SO OSSOSO EO OSSN 157 ! 159

New disk server protoCOlieesseccsscssocccccsssccssss 93=101

abort ® 000006000 00600 0 060000 0008 050 000 0¢ 0000006000000 eSO SIGEIOGOOINDES 97

cancel ® 0 0 00 06000 0000 OO0 OO OO0 O OO L 0L O LN OO0 O OOONOOCIOSIOSIOETS OB 100

disk request ® ® 0 068006060 0 00 00 000 0 0 00000 OO OO E O OO O SO PO OSSO E PO 95
‘rrornessages ® 8 6.5 0 000 000 00 000000 SO OO O OO OO OO OO0 OO 0O O SLGEDEDNOSIES 94

go L N B I I B I B BB B B B I A N N N N I N N A A A N N N N N N N NN N NN N N N RN R] 98
last © 0 85 0 00 00000 0600000006000 00O L OO OO 0000 LO SOOI BIOEOEOEOINOOERIESE 96
restart ® 0.0 0000006009500 00000000000 OOLOLOOLOEOOSEOLLISIOOINGCOIOEIEOCELIEBLEOLEBLEOENES 101
results ® 0 0 0 0000 00 00 060600060 000000000 00000000 O0 00000000000 ITPSE 99

see also Omninet driver for new disk server protocol

old disk sewer protocol 9 6 0 0 000000005 00 0000 OO OO OO0 OO OSSOSO OCDS 87-92
di sk req\lest ® ® 6 0000 00 005 0005 ¢ 000 00O O OO OISO O OO O OO NLOEBLEOESOEOOOSEDPIDOE 8 8
tind a sewer ® 6 0 8060000 000 06005 E 0P OOO OSSO OO0 OLOLOSLIOOEOEOEIOES 92

go L I I I B I N B BN B B O B BN RN B R BE BN R RN BN B B A R R A N N A I N N N N N N N N N N N NN IR] 90
resutls ® ® 6 0 0 0 0 8 000 0000 8BS OO OSSO O OO N OO SN O OO OO OO O EE PGS POEOLEOEOSINOEGES 91
last ® 6 0 8.0 0 0660 0 0 0 00 00 0 0 060 06 000 000000 C OO0 OO OO O S SISIOECEOISIBSSO PO 89
see also Omninet driver for old disk server protocol
omnibDrive
see DIP Switches, Firmware, Hardware description, Interleave
factor, LED's , Physical sector size, Prep blocks,
Prom code, Return codes , and Write verify option
omninet driver for new disk server protocol ...ccceceeces. 129-144
check for cancel or restart ...cceeecccccccsossosssscnscnsne 142
FIUSh ccceeeeesccsoocccscosononsssasssacsocsnssssssssssssnss 143-144
sending a long cOommMaANd .cccesesosssoscsssscscsssscsseses 137-140

Corvus Systems 291

Mass Storage Systems GTI Index

sending a short command .cccecececscessscccscccsscsscase 134-136
wait for disk BeIrver YesSPONSEe ..ceecssesscscsssscsssscsossses 14l
see also New disk server protocol
omninet driver for old disk server protocolcesceee00s 114-130
flush © 00 90 0 0000 00000002 P 080000000 00EIEEROESEECEOEIEIITSEOLINOEOSIOSOCOES 128-129
.ending a long Command © 0000000000000 00s000BROGILIESEOOEEOEOEOON 124-126
sending a short command ..ccecceeescsccscosssssssssosces 121-123
wait for disk Berver responSecccecscesssscssccscesscccse 127
see also 0l1ld disk server protocol
Omninet prOtOCOIS © 0 0000060606000 060600060600060000600600s000060C0060CO0CICCD 73-112
see also Long commands, 0ld disk server protocol,
omninet driver for new disk server protocol,
Oomninet driver for old disk server protocol, and
New disk server protocol, Send message command
vector, Short command, and Setup receive message
command vector

Park the heads cOmMMANGA ... cccoocsocscscccsscssssssssesessscsce 48-49
Physical sector 8ize ...ciccveercccccescccccrsossossosccocsccscsece B
omniDrive ® 0 0 0 & & 0 0 0 0 08 OB OO RO OO PO NS PO OSSO O SO OO0 0N S 0N 080 8o 5
Rev B/H series Arive ..ccceeecsesccscesccccesscccsscsscssscnsse D
The Bank ® ® & 9 & 0 S ¢ 0 O O O OO OO0 O OO PPN OO 0N SO0 SO AL SN0 N 0N N0 NS DN e 5
Physical versus logical addressing ...ececsceececsceccocecs 61=64
physical layout of each storage device ...c.ccceeeecccesccss 61
Pipes © 6 00 0 000006000 0060060060006060600606060 0000060600000 006060 0s000O0C0CTEIESTS 29-33
active hole ..i.ceeeecrcescscsosassssssssosscssscsssssssscses 32
@XYOY COAERS cccecssssossscccssscsssssssssssssasccsvcecsss 181, 230
inactive hole ..c.ccevevvecccccccnsccscsccscscscscssscnsssnce 33
performance considerationsccececrecccscscccccossscscocss 33
Pipe name table ...ccccecccccsesescccscscscacsccccsss 29-30, 32
pipe pOinter table © 9 06006060606 00606000000606800c000600000000CO0CGCEIEDLES 29-32
pipe states ® 6 6 8 8 0 0 0 00 00 50 0 00 08 S PO O GO LT LN OO NG S OO NS 230
sending messages via the pipescccceceecescseseces 186-189
Pipe commands © 00 0000060090 000060060 0000060000 000c000s00RCGLOLEGEOGEOIOIEOIEES 20-28
pipe area initializeccccciieiiiiiiicrineeeses 20, 28, 31
pipe close, pipe purgecccecececscccescscsccscces 20, 25
Pipe open for read .c.cceccescosccsrccscsscsscssscsscscccss 20, 22
pipe open for Write ...cccecccccoctscsccccncsnsncsscssesnses 21
pipe read'II....I..............0..0‘.....'l..l'...‘.l.l. 20' 23
Pipe results ...ccececccecscsscrcccsscsssssscsescnsnsess 20, 28
Pipe StatuUs ...ccceerrecrcccccsccnccsacacssccssccesss 20, 26, 27
Pipe write ...ciiiererccsescscectscocsccscccsncssccccscsccces 24
see also SendCom procedure
Pipe functions © 0 0 0 0 00 8 0000 0006606000000 0000606000006000c00060 181‘184
pipeclrd function ...ccccecccccsscrcsscccsssecsceasssss 181, 183
pipeclwr functioncceccececcoscssssssassccssseasss 181, 184
pipeinit functioncceccvcerientcscrrrccrtessssessss 181, 184
pipeoprd function .cccccecectcicescrcscecsasacsss 181, 182, 186
pipeopwr function ...cccceccecccessesstccsesscssss 181, 182, 186
pipepurge function ...ccccceccicccscttsstecressccessss 181, 184
piperead functionceececcecosccsscsscccssrcensesesss 181, 183
pipestatus functionccccccicccccrccrtcrccnrsacessss 181, 182
pipewrite function ® @ @ 0 0 0 0 0 0 0% ¢ O S S O OO O S O GO ST OSSO O S OO 181' 183

Corvus Systems 292

Mass Storage Systems GTI Index

Polling parameters ..ccccececcccccssssvsscscsscscsccsccnscssces 70
default values for polling parameters ...cccceececcscsccscee 70
Prepblocks © 0 0 0 00 00 000000 P OO OO0 00N GO 0L 0000 OO ODNOOCOENOSLIEEES 51
omniDrive ® 0 0 0000 0000000000000 OO OO OB OO0 OO0 GO0 OCOSEOEOGEPSESEOEOEOCOODN 51' 231
Rev B/H 'eries drive ® 0 0000000000000 0 000 0600000500 PO OO OOE 51' 231
The Bank ® 0 0000000060000 0695 0006000000000 006000 0060600006068 060606s600se0 51
Prepmode COmmands ® 0 0 0 0 0000006000000 0006000000000 0000000090000 50-52
destructive track verify (Bank Only) .ecececcsssscccsess 57, 60
fill the drive ® © 6 0000000000000 0000 00000 0006600500000 0000000090 54
format drive (Rev B/H Arives) ...ceecescocsvscccscscsoscscces 53
fomat drive (omniDrive) .0.0.0......50.00...‘...‘...0.0..0. 53
fomat tape ® 0 5 00000000 0000008000000 0GOS LOOOOOSOSSSSDSPIOONNOSINOSLE 54-56
non-destructive track verify (Bank only) ccccsccesssecsss 57, 59
put drive in prep mode ® © 6 0600000000500 000 OO OSSOSO OO OESSOESNGOSES 51
read a block of firmware (OmniDrive/Bank) .cccecceccceces65, 67
read & block of firmware (ReV B/H) ccicesecscccccccssecss 65, 66
reformat tape ® ® 0 0 000000000 0000000 OSSO OO OO N OO OE OO SOEOIGCSOEOSEOSEEOOS 56
reset drive (take drive out of prep mode) .eeeceescccccesces 52
write a block of firmware (OmniDrive/Bank) ..ccesceceese 65, 67
writeablock Of fimware (Rev B/H) e & 0 5 00000000000 0 00 0 65' 66
verify drive (OmniDrive, Rev B/H Arives) .ccecececssccsces 56=58
Prom
prom Version DSBA.A .ccevevccccssoscrscsscscscscsssonssssscccecs 93
promversion DSD].BA @ 0 0000600600600 0900 00000600 0000000000606 06000s 0 93
prom version DSD981D ® 0 0 000600 000 0000 OGO OO OO0 OO OGO OOGEOEEOIEESEOIEPEGCENOEOES 93
Prom code
omibrive ® ¢ 0 0 8 0 000 0000 000000000 ODO OO OSSOSO OSSO OSSOSO OOOS 206-207
Rev B/H .eries drive ® 9 5000600006009 060000000060 006000000000 194-195
The Bank G 0 0 000 0000 0 0000 000000000 O P OO0 OGO OSSO G S OOOESSEOIEBNOIGGCESES 214

Read-Write COMMANAS ..cceeescatssccncccsossscscsscscscscncocse 5=14
read a sector (256 byte BecCtOr) ccccccecccscsccccvssscccecee 6, 8
read a sector (128 byte B8eCtOr) coceecscscscsscscscscccccecscs 7
read a sector (512 byte BeCtOY) .oceeccescescosccscssccasance 9
read a sector (1024 bytes BeCtOr) cccecececcscocccsccscseses 10
turn on rﬁcordwrite ® 0 0 00 00 00000 O 0O 00O O OO O EEOOIOIEOEOOPOOCTEOOCECGCOSOLOTSTS 13
turn off recordwrite @ @ 0 05 0 000 06000060060 ¢ 000 OO0 OO0 OC eGSO OGOEOIOSEES 14
write a sector (256 byte S8€ctOor) ...ceeesescssccerssssceees 6, B
writea‘ector (128 byte .QCtor) S 06000000000 0000000000000000 7
write a sector (512 byte SeCtOr) .cceeececcceccososscnsscncas 9
write a sector (1024 byte 8eCtOr) .ccvecesceccecccccoconcsas 10

Return codes
r.v B/H driv.s ® 0 00 ¢ 000000005805 0080000000092 OVOSOGLIOGOLOGEOSIEOSODS 225-226
omniDrive/Bank ® © 0 0600060060000 6060006000000 00060000600606000000000 227

Rev B/H series drive

see DIP Switches, Disk flat cable interface, Firmware,

Hardware description, Interleave factor, LED's,
Physical sector size, Prep blocks, Prom Code,
Return codes , Write verify option, and Virtual
drive table

Corvus Systems 293

Mass Storage Systems GTI Index

semaphores e 5 0 60 00 0 00 00 0O 0O DO O OO N OO E LN O N 0N 0SSO E S e e 167-171
1OCk programII..Q....O.Q.....ll...l...’t'...'.00000169-172
performance considerations ...ccoeescocccsccsssctcccscsscsecss 19
'emaphore .rrors G 6 0 0 8 0600 02 0000000000 DO OE O OO0 OSSP OOOSE 18’ 228
semaphore StaAtes ...ccocecscccssccssccsssvsssscsosssccsssncce 228
semaphore table .c.c.ccocsccsosssscnvcsssssssossscssssssscecs 18=-19
UN1OCK PYXOGYAM .eescsscccesoscsosossssssncsssssscsccsccee 171=172
volume locKking cceceeceeversesessccssccssscssssccscscesssce 169=-172
Vo:.uma .haring ® 0 0 6 0 0000002 OO OO N OO0 OO0 OSSR OO NN OEODNODS 168-169

see also Semaphore lock programs

smaphor‘ c°mands ® © 0 00 000 000000080008 00000000 PPN SOSESOETCSDS 14-18
initialize .emaphore table ® 9 0 0 00000 00000 OO 0SS 0000 OO PG POS OGO ECEDIOCE 17
.emaphOre IOCR 9 00 600 00 0 OB OO E S OO O OO ST OO OO OE OO OO O NS OSOPOE SO OS OSSP 16
semaphore UNlOCK ceoccoscessssossscosssscosscscscsccssssscssscce 17
‘emaphore .tatus ® © 0 O 0 0 O 00 0O 0O O D O OO0 OO LN OGOV ES OO N EE N PO OSSOSO 18
wild card character c..cececescscscsccssosssscsvscscsscscses 15

see also SendCom procedure

Semaphore 1OCk programs © 0 0000000000000 00CIROIOLOIOEOOGEOOIEOIEOEOINTOTE 185-179
Apple Dos constellati°n I/II ® 6 9 00000 0 ¢ 0000 0O OSSOSO OO OO DL OO OONODOSOS 179
Apple Pascal Consellation I .cccccescoccscsrscnssesccsse 178=-179
CP/M-BO' CP/M-ss @ © 0 0 56 5 000 00000000 00 00000000 CP OO PE SO SOSOPIE 178
Corvus Concpet operating systemccceceecececececses 175=176
Msms constellation II ® 00 0 0 000 0 9008 0 OO OO OO S E OO OO N OPOPSOPOODS 177-178
Version IV p-system and
Apple Pascal Constellation II ..cceccescecsscscccsansoae 176=177

5endCom ProCeAdUre .cceoesessscccssossssssssccossscsssssssssce 149-165
Apple ms constellation: ® @ 0 8 0 00 00 0 00 80 00 00 0SSO0 PN OO EDNOSCSD 165
Apple DOS COnStellation II © 0000006000000 s0 00000 COLBOOLSIGGE 158-159
Apple Pascal Constellation I cccceeccecccesacsssccscscsssses 162
BCIOOBJ ® 8 6 9 0 00 08 00 00O OO OO O S OO OO PO LN PO OSSOSO OSSO C O OOS PO OO OO OSEPCODS 165
CP/M-SO, CP/M-BG con.tellation II e s 00000 OO POIBOLOEOIOLOLEEOES 156-158
CP/M-ao Constellation: ® 0 680060060000 46060000000 000000 00000000 165

CDRECV ® 0 0 6000 00 0 0 5 0005000 00N E OO OO OO OSSP OO ON OSSOSO ODSOSOSOPSES 151
CDSEND ® O 0 00 8 000 8 6O 0 OO OO OGO OO0 LSOOI G OO OO OO OO OO OO OSSO OOTSODIODS 151
Corvus Concept operating Systemccccccceccececcceccee 151=154
HSDOS constellation II ® ® & 0 0 0 0 0 00 0 605000006000 S O E OSSO N e 154-156
omIBcI'oN ® 9 © 0 0 0 00 00 0 000000 S SO0 0T OO NSO 0O E NN O e NN O 158 ’ 165

SEND ® 6 0 0 00 080 0500 S O OO OE OSSP S C O P00 N0 OO0 NOOEOSTOIOIOIO OO DSBS TIVIES 158

RECV ® © 0 00006000500 0000 P00 OO0 OOOLL NSO HCO OSSO0 OO OSSN POSSIPC NS 158

Version IV p-system and
Apple Pascal Constellation II ...ceeececcscccecencsecsess 159-162
Send message command VECLOYr .ceccccscscrscccsccossscscssssssccse 74
Setup recieve message command VeCLOr ...cececsccccscscsccssces 75
Short comands 9 ® 9 6 00000 0 0000000 SO S DO SN OSSNSO OPOSEOEOSODSTEDPPOOS PN 76-77
sending a short command ...ccoccosvsecscosvesscccscccssses 77=80
see also Omninet driver for old disk server, and
omninet driver for new disk server
Software developer's information ...cccccceececccccccncse 279-283
Msms ® 0 0 & 0 0 000 00 0 00 0 0 00 500 0O OO OO N OO OO OB OSDN S OOEONOSS NN 279-281
CP/M 80 Constellaticn II ® 0 0000 00 00 00 0000 0O O OO OO OO OO OO DPES 281
CP/M 86 Constellation IIcceveecccsccccccscsrssnnscncscse 281
CP/M 80 (Flat cable only) ® 6 5 ¢ 00 & 0 0 0 O OO 9P S OO0 OO OO N PO Ee OO CE OO PSP 282

Corvus Systems 294

Mass Storage Systems GTI Index

Apple Pascal Constellation I ..iciceescecsecsccsosscssasees 283
Apple Dos Constellation Icccceeeeeccccccccosocsenssas 283
Spare traCks ® © 0 6 6 0. 0 6 00 0 0 0 00 0 OO0 OSSO OO PN OO SN SN OO NN SN eSO 60-61
omniDrive ® 8 06 06 0 5 06 0 6 0 0 0 5 ¢ OO0 O OO O OO OO OO OO OO OO GO OO SO OSSO SN DN 60
Rev B/H series Arive ...eceeeecrsecscececsscssscsscscssocscsss 60
The Bank ® ® 0. 0. 0. 0 0.0 0 060060 0 & 0 002 0606006000600 060 0060000000000 08 060690600 60
SpOOl progr&m 0 0 060000 00000000000 s0IBOOOOGEIRSISIEOEOIREOSOEEDNOEOIEEOTDOPNEOSEOEEOETSSTS 187-192
Apple DOS Constellation I/II ..cceeesecscssnsssscccossssees 194
Apple Pascal 0 0000600600 ¢CC0 0000006000000 006000000000cCOCIOCITCIEEEIES 191-192
Corvus Concept Operating System e 0060000000000 00OOCEOICOGEEOETOSITOTDS 189-190
coms spool program e @ € 0 0 0 & 0 0 O O OB O OO0 OO OO OO OO OSSO SO POEBOS DN SD 187-189
CP/M 86, CP/M 80 Constellation II .cccececcccsscscscsscesnse 191
MSDOS Constellation II .(..eceescrsocssccssssssoscnsscssacssse 191
Version IV p-system and
Apple Pascal constellation II R EEEEEEEE I I I I I S A B I) 192-191
SPOOLEr cesesecccsssscosssssscsscssososcscssosscssscesscssesces 187

The Bank
changing bank tapes or
powering off the bankccceveccecccossccscscocsscscossncses 49
see also DIP Switches, Firmware, Hardware description,
Interleave factor, LED's , Physical sector size,
Prep blocks, Prom code, Return codes , and
Write verify option
Transporter Cards © 000000 506000606000000806000800600000000CO0CGCOCOCOCL 235-247
Apple II tr&nsporter © 6400000060600 0000000000s0IICOLOAOEEOSEEOCGSTEIE 235-236
Concept transpoter ...cuceecececsccoccsscossccsscsccneee 236-237
IBM PC transporter .ccccecsceccsccsccsscscsssnscscsccsssce 237-241
IBM PC-JRo transporter 0006000006000 0806006000000 0OCCEOEOSGISIOEOEEOSETOSIOSITEOEON 247
LSI-ll transporter © 000009060 00600600¢0 000000000000 OCCISIOIEOITILE 248-251
NC-transporterccccoceccescccocesccossaccosssccnvcses 243-242
Rainbow transporter ..cccecececceccecsscoscocsccsccoscces 246-247
Sony transporter ® 0 6 06 0600 0 8 06000 060 0 0 & 0 00 0000 0PSO E O 000 OCO e 0 243
Univerals buffered transSporter .cccececeecscsecscscssseees 243-244
VT"lso transporter"'..............ﬁ...........0.‘0.0....... 242
Z-80 engineering transporter ...ccceececececccscscscscsesss 244
Z-100 transSpOYter ..cccccecccccsscsoscssssssscnsescscses 247-248
Transporter command summary ® 6 ® 0 0 0 00 686 0 0 0 00 00 00 00 00090 9 P 229-230
Transporter result COdes ® 0 0 060 0600 00606006060 008006 09 000 000000000000 229
Transporter timeoutsccoveeevevesrscsrsocsccncscsssnsecses 116

Virtual drive table ® 6 0 0 06 060 50606 60 060 0006 600 560000 00 000000000000 68-69
write veri fy option ® 6 06 0 00600 0 0 0 0 0 0 0 ¢ 0 09 OO OO OO OO OO N O OO OO OS DSOS TSNODPS 12
omniDrive © © 0 06 0 0 ¢ ¢ 000600 860060 0608 ¢ 060 000 000008 063 0000060006000 000000 12

Rev B/H series drive ® ® © 6 00 0 0 06060 00 5 ¢ O 0O 0O OO0 SO SO OO OO OO O OGS N eD 12
The Bank ® 6 0 0 0 06 060 0 006 06060 0660 056 060008067 0600000600000 0600000000000 0 12

Corvus Systems 295

CORVUS

	00001
	00002
	00003
	0001
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	000b
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	210a
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	xBack

